Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB-vecto AD
=vecto DA+vecto AB
=vecto DB
-vecto CD-veco BC
=vecto CB-vecto CD
=vecto DC+vecto CB=vecto DB
=>vecto AB+vecto CD=vecto AD-vecto BC
b: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CB}\)
\(\overrightarrow{CD}-\overrightarrow{BD}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CD}-\overrightarrow{BD}\)
=>\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)
c: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)
\(\overrightarrow{CB}-\overrightarrow{CD}=\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)
=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
a: \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\right|=2\cdot AC=2\cdot5=10\)
b: \(\left|\overrightarrow{AM}+\overrightarrow{AN}\right|=\left|\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{2}+\dfrac{\overrightarrow{AD}+\overrightarrow{AC}}{2}\right|\)
\(=\left|\dfrac{3\cdot\overrightarrow{AC}}{2}\right|=\dfrac{3}{2}AC=\dfrac{3}{2}\cdot5=\dfrac{15}{2}=7.5\)
a) I là trung điểm
nên vectoAB+ vectoAC= 2AI (1)
vectoAD+ vectoAE=2AI (2)
Từ (1) và (2) suy ra câu a
b) vecto AB+ vectoAC= 2AI(cmt
vectoAD+ vectoAE= 2AI(cmt
vectoAS=vectoAB+ vectoAD+ vectoAC+ vectoAE
tương đương: vectoAS=(vectoAB+ vectoAC)+ (vectoAD+ vectoAE)
vectoAS=2AI+2AI= 4AI
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
\(\overrightarrow{AD}-\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)
Do đó: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AD}-\overrightarrow{CD}\)
=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}-\overrightarrow{BC}\)
A B C D
ta có \(\overrightarrow{BC}\cdot\left(2\overrightarrow{\cdot AD}-\overrightarrow{AB}\right)=2\cdot\overrightarrow{BC}\cdot\overrightarrow{AD}-\overrightarrow{BC}\cdot\overrightarrow{AB}=2a^2\)
(Do BC và AD cùng hướng, BC và AB vuông góc với nhau)
a: \(\left|\overrightarrow{OA}-\overrightarrow{OC}\right|=\left|\overrightarrow{CA}\right|=AC=a\sqrt{2}\)
b: \(\left|\overrightarrow{AB}-\overrightarrow{CD}\right|=2\cdot AB=2a\)
ta có \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)^2=AB^2+2\overrightarrow{AB}.\overrightarrow{AC}+AC^2=AB^2+AC^2=5^2+12^2=13^2\)
Vậy \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{13^2}=13\)
còn \(\overrightarrow{BA}-\overrightarrow{CB}=\overrightarrow{BA}-\overrightarrow{CA}+\overrightarrow{BA}=2\overrightarrow{BA}-\overrightarrow{CA}\)
Mà \(\left(2\overrightarrow{BA}-\overrightarrow{CA}\right)^2=4BA^2-4\overrightarrow{BA}.\overrightarrow{CA}+CA^2=4BA^2+CA^2=4.5^2+12^2=244\)
vậy \(\left|\overrightarrow{BA}-\overrightarrow{CB}\right|=\sqrt{244}\)