K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

(((Làm theo hướng đó đúng rồi.. Tiếp nà )))

HFCE là hình bình hành (tự c/m)

=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)

Mà EC//AK => HF//AK

 => Δ ANK =  Δ FNH (g.c.g)

=> AK=HF (2)

Từ (1) và (2) suy ra AK=EC. Mà AK//EC

=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC

=> O cũng là trung điểm của EK

=> Đpcm...

undefined

Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .

Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .

Ta có : OM , AH cùng vuông góc với EF nên OM // AH 

=> M là trung điểm CH ( Vì O là trung điểm của AC )

Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .

Suy ra : HF // CE // AK 

Dễ chứng minh △HNF = △KNA ( g.c.g )

Suy ra : Tứ giác AHFK là hình bình hành .

Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .

Suy ra : CKAE là hình chữ nhật .

Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )

27 tháng 7 2017

Thử nhé: Gọi O' là trung điểm của AC.

Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).

Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.

nên O'M là đường trung trực của EF. 

Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.

Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM. 

Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?

27 tháng 7 2017

Dù sao cũng cảm ơn nhiều !~

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH=EF

b: góc IFE=90 độ

=>góc IFH+góc EFH=90 độ

=>góc IFH+góc AHF=90 độ

=>góc IFH=góc IHF

=>IH=IF và góc IFC=góc ICF

=>IH=IC

=>I là trung điểm của HC

Xét ΔHAC có HO/HA=HI/HC

nên OI//AC và OI=AC/2

=>OI//AK và OI=AK

=>AOIK là hình bình hành

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy

20 tháng 12 2023

loading...  loading...  loading...  loading...