K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

8 tháng 12 2018

Nối AC ,nối BD 

Xét tam giác ABD .Ta có:

AQ =QD(gt)

AM =MB(gt)

=>QM là đg trung bình tam giác ABD.=> QM // BD ,QM =1/2 DB 

xét tam giác BDC có :

NB = NC(gt)

PD =PC (gt)

=> PN là đg trung bình tam giác PDC.=>PN//BD,PN =1/2 BD

Vì: QM //DB,QM =1/2 DB

PN  //BD;PN=1/2 DB

=>QM // PN;QM = 1/2 BD=PN

vậy MNPQ là hình bình hành ( tứ giác có một cạnh đối song song và bằng nhau)

b)để hình bình hành MNPQ là hình chữ nhật ta cần góc Q =90 độ(hình bình hành có 1 góc vuông là hình chữ nhật)

22 tháng 2 2018

A M B D Q N C P

a) \(\Delta ABC\)có : 

MA = MB ( gt )

NB = NC ( gt )

=> MN là đường trung bình của \(\Delta ABC\)

=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)

CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)

=> MN // PQ ; MN = PQ .

=> Tứ giác MNPQ là hình bình hành .

b) Theo câu a) , Ta có : 

MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)

+) Hình bình hành MNPQ là hình thoi 

=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\)

=> ABCD là hình thang cân .

+) Hình bình hành MNPQ là hình chữ nhật 

\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD ) 

=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .

+) Hình bình hành MNPQ là hình vuông 

\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)

=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau . 

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD