K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

​giải

*xét tam giác abc và tam giác abf có

góc abc=góc bà(so le trong)

ad;chung

góc bac=góc abf(so le trong)

suy ra tam giác abc=tam giác abf(gcg)

suy ra af=bc=4(2 cạnh tương ứng)

bf=ac=3

​*xét tam giác abc và tam giác ace có

góc acb=góc cae(số lẻ trong)

ac; chung

​gốc bac= gốc eca(slt)

​suy ra tam giác abc= tam giác ace

suy ra ae=bc=4(2 cạnh tương ứng)

ce=ab=2

* xét tam giác abc và tam giác dcb có

​góc acb= góc dbc(slt)

bc;chung

​góc abc= góc dcb

suy ra tam giác abc=tam giác dcb

suy ra dc=ab=2

db=ac=3

​ta có ef=ae+af=4+4=8

df=db+bf=3+3=6

de=dc+ce=2+2=4

​vậy chu vi của tam giác def là

​để+DF+EF=4+6+8=18(ĐƠN VỊ ĐO ĐỘ DÀI)

13 tháng 5 2017

Tam giác AEC có góc AEC = \(90^0\)

=> \(AC^2=AE^2+EC^2\)

=>\(EC^2=AC^2-AE^2\)

=>\(EC^2=5^2-4^2\)

=>\(EC=\sqrt{9}=3\left(m\right)\)

Có EB + EC = BC

=>EB = BC - EC

=>EB = 9 - 3

=> EB = 6 (m)

Tam giác AEB có góc AEB = \(90^0\)

=>\(AB^2=AE^2+EB^2\)

=>\(AB^2=4^2+6^2\)

=>\(AB^2=16+36\)

=>\(AB^2=52\)

=>\(AB=\sqrt{52}=2\sqrt{13}\) (m)

7 tháng 7 2017

\(\Delta ABC=\Delta EHD\)

6 tháng 11 2017

Hai tam giác trên bằng nhau.

Ký hiệu: ∆ABC = ∆ EHD

13 tháng 4 2018

Ta có: AB > AC (gt)

Suy ra: HB > HC (đường xiên lớn hơn có hình chiếu lớn hơn)

Suy ra: EB > EC (hình chiếu lớn hơn thì có đường xiên lớn hơn)

27 tháng 5 2017

Ta có : AB=AC

=> \(\Delta ABC\) là tam giác vuông cân tại A ( vì tam giác có 2 cạnh bằng nhau )

=> \(\widehat{ABC}=A\widehat{CB}\) ( hai cạnh đáy của tam giác cân )

=> \(\widehat{ABC}=A\widehat{CB}=45^0\)

=> \(\widehat{CBD}=\widehat{A}+\widehat{BCA}=135^0\) ( góc ngoài của tam giác )

Ta lại có:

BD=BC

=> \(\Delta BCD\) cân tại B ( vì tam giác có 2 cạnh bằng nhau )

=> \(\widehat{BDC}=\widehat{BCD}\) ( hai cạnh đáy của tam giác cân )

=> \(\widehat{BDC}=\widehat{BCD}=\dfrac{\left(180^0-135^0\right)}{2}=\dfrac{45^0}{2}=22,5^0\)

\(\widehat{ACD}=\widehat{BCA}+\widehat{BCD}\)

=> \(\widehat{ACD}=45^0+22,5^0=67,5^0\)

Vậy trong \(\Delta ACD\) có :

\(\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{ADC}=22,5^0\\\widehat{ACD}=67,5^0\end{matrix}\right.\)

29 tháng 12 2019

Ta có: \(BC=1.\)

+ Xét \(\Delta ABE\) vuông tại E có:

\(AB^2=AE^2+BE^2\) (định lí Py - ta - go).

=> \(AB^2=5^2+1^2\)

=> \(AB^2=25+1\)

=> \(AB^2=26\)

=> \(AB=\sqrt{26}\) (vì \(AB>0\)).

+ Xét \(\Delta CDF\) vuông tại F có:

\(CD^2=DF^2+CF^2\) (định lí Py - ta - go).

=> \(CD^2=2^2+2^2\)

=> \(CD^2=4+4\)

=> \(CD^2=8\)

=> \(CD=\sqrt{8}\) (vì \(CD>0\)).

+ Xét \(\Delta ADG\) vuông tại G có:

\(AD^2=AG^2+DG^2\) (định lí Py - ta - go).

=> \(AD^2=4^2+3^2\)

=> \(AD^2=16+9\)

=> \(AD^2=25\)

=> \(AD=5\) (vì \(AD>0\)).

Vậy \(AB=\sqrt{26};BC=1;CD=\sqrt{8};AD=5.\)

Chúc bạn học tốt!

26 tháng 5 2017

Ta tính được : AB = \(\sqrt{26}\) ; CD = \(\sqrt{8}\) ; BC = 1 ; DA = 5