Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Tới đây bạn tự làm tiếp nhé
\(\text{Với }m\ne-1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}mx+y=m^2+3\\y=x+4\end{matrix}\right.\\ \Leftrightarrow mx+x+4=m^2+3\\ \Leftrightarrow x\left(m+1\right)=m^2-1\\ \Leftrightarrow x=\dfrac{\left(m-1\right)\left(m+1\right)}{m+1}=m-1\\ \Leftrightarrow y=x+4=m+3\)
\(\Leftrightarrow\left(x;y\right)=\left(m-1;m+3\right)\left(đpcm\right)\)
\(\Leftrightarrow Q=x^2-2y+10\\ \Leftrightarrow Q=\left(m-1\right)^2-2\left(m+3\right)+10\\ \Leftrightarrow Q=m^2-2m+1-2m-6+10\\ \Leftrightarrow Q=m^2-4m+5=\left(m-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow m=2\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy \(Q_{min}=1\)
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
=>2x-2y=8 và 2x+3y=5m+3
=>-5y=8-5m-3=-5m+5 và x-y=4
=>y=m-1 và x=4+m-1=m+3
x^2+y^2-4=(m+3)^2+(m-1)^2-4
=m^2+6m+9+m^2-2m+1-4
=2m^2+4m+6
=2(m^2+2m+3)
=2(m^2+2m+1+2)
=2[(m+1)^2+2]>=4
=>A<=2019/4
Dấu = xảy ra khi m=-1
Ta có: \(x+y=m\)
\(\Rightarrow x^2+y^2+2xy=m^2\)
\(\Leftrightarrow\left(-m^2+6\right)+2xy=m^2\)
\(\Leftrightarrow xy=m^2-3\)
Vậy \(P=xy+2\left(x+y\right)=m^2+2m-3=\left(m+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi \(m=-1\).
Kiểm lại, với \(m=-1\), \(\left(x,y\right)\) là \(\left(-2;1\right)\) hay \(\left(1;-2\right)\).