Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Tới đây bạn tự làm tiếp nhé
ta có : \(\left\{{}\begin{matrix}mx+y=7\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\2x-7+mx=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\x=\dfrac{11-mx}{2}\end{matrix}\right.\)
\(\Rightarrow P=x^2+y^2=\dfrac{\left(11-mx\right)^2}{4}+\left(7-mx\right)^2\)
\(=\dfrac{121-22mx+m^2x^2}{4}+49-14mx+m^2x^2\)
\(=\dfrac{5m^2x^2-78mx+317}{4}\)
\(=\dfrac{5m^2x^2-2.\sqrt{5}mx+\dfrac{78}{2\sqrt{5}}+\dfrac{1521}{5}+\dfrac{64}{5}}{4}\)
\(=\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\)
ta có : \(P\) nhỏ nhất khi \(\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\) nhỏ nhất
\(\Leftrightarrow\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\) nhỏ nhấtta có : \(\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\ge\dfrac{64}{5}\forall mx\)
khi \(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}=0\Leftrightarrow m=\dfrac{39}{5x}\)
khi đó ta có : \(P=\dfrac{\dfrac{64}{5}}{4}=\dfrac{16}{5}\)
vậy .............................................................................................
\(\text{Với }m\ne-1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}mx+y=m^2+3\\y=x+4\end{matrix}\right.\\ \Leftrightarrow mx+x+4=m^2+3\\ \Leftrightarrow x\left(m+1\right)=m^2-1\\ \Leftrightarrow x=\dfrac{\left(m-1\right)\left(m+1\right)}{m+1}=m-1\\ \Leftrightarrow y=x+4=m+3\)
\(\Leftrightarrow\left(x;y\right)=\left(m-1;m+3\right)\left(đpcm\right)\)
\(\Leftrightarrow Q=x^2-2y+10\\ \Leftrightarrow Q=\left(m-1\right)^2-2\left(m+3\right)+10\\ \Leftrightarrow Q=m^2-2m+1-2m-6+10\\ \Leftrightarrow Q=m^2-4m+5=\left(m-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow m=2\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy \(Q_{min}=1\)
bấm vào tìm câu hỏi tương tự đi
\(\Leftrightarrow\left\{{}\begin{matrix}mx-2x=7+4=11\\2x-y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m-2\right)=11\\y=2x+4\end{matrix}\right.\)
Nếu m=2 thì hệ vônghiệm
Nếu m<>2 thì hệ có nghiệm duy nhất là: \(\left\{{}\begin{matrix}x=\dfrac{11}{m-2}\\y=\dfrac{22}{m-2}+4=\dfrac{22+4m-8}{m-2}=\dfrac{4m-14}{m-2}\end{matrix}\right.\)
\(P=x^2+y^2\)
\(=\dfrac{121}{\left(m-2\right)^2}+\dfrac{\left(4m-14\right)^2}{\left(m-2\right)^2}\)
\(=\dfrac{16m^2-112m+196+121}{\left(m-2\right)^2}\)
\(=\dfrac{16m^2-112m+317}{m^2-4m+4}\)
Để P min thì 11/m-2=4m-14/m-2
=>4m-14=11
=>4m=25
=>m=25/4