K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

1: AM+MB=AB

BN+NC=BC

CP+PD=CD

QD+QA=AD

mà AB=BC=CD=AD và AM=BN=CP=QD

nên BM=CN=PD=QA

2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>MQ=MN(1)

Xét ΔMBN vuông tại B và ΔNCP vuông tại C có

MB=NC

BN=CP

Do đó: ΔMBN=ΔNCP

=>MN=NP(2)

Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có

NC=PD

CP=DQ

Do đó: ΔNCP=ΔPDQ

=>NP=PQ(3)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)

nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(90^0+\widehat{QMN}=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=NP=PQ=MQ

nên MNPQ là hình thoi

Hình thoi MNPQ có \(\widehat{QMN}=90^0\)

nên MNPQ là hình vuông

 

2 tháng 11 2017

Bạn vẽ hình rồi mk làm cho

a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

DB chung

góc PBD=góc MDB

=>ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

=>H nằm trên trung trực của BD(1)

Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có

BD chung

góc QBD=góc NDB

=>ΔQBD=ΔNDB

=>góc KBD=góc KDB

=>K nằm trên trung trực của BD(2)

Vì ABCD là hình thoi

nên AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng

b: Xét tứ giác BHDK có

BH//DK

BK//DH

BH=HD

=>BHDK là hình thoi

a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

DB chung

góc PBD=góc MDB

=>ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

=>H nằm trên trung trực của BD(1)

Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có

BD chung

góc QBD=góc NDB

=>ΔQBD=ΔNDB

=>góc KBD=góc KDB

=>K nằm trên trung trực của BD(2)

Vì ABCD là hình thoi

nên AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng

b: Xét tứ giác BHDK có

BH//DK

BK//DH

BH=HD

=>BHDK là hình thoi

a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

DB chung

góc PBD=góc MDB

=>ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

=>H nằm trên trung trực của BD(1)

Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có

BD chung

góc QBD=góc NDB

=>ΔQBD=ΔNDB

=>góc KBD=góc KDB

=>K nằm trên trung trực của BD(2)

Vì ABCD là hình thoi

nên AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng

b: Xét tứ giác BHDK có

BH//DK

BK//DH

BH=HD

=>BHDK là hình thoi

13 tháng 9 2019

Chúc bạn học tốt!

Tham khảo:

Cho hình thoi ABCD,Trên các cạnh AB BC CD DA lấy theo thứ tự M N P Q,AM = CN = CP = QA,O là giao điểm 2 đường chéo hình thoi ABCD,Chứng minh ba điểm M O P thẳng hàng,Chứng minh ba điểm N O Q thẳng hàng,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

DB chung

góc PBD=góc MDB

=>ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

=>H nằm trên trung trực của BD(1)

Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có

BD chung

góc QBD=góc NDB

=>ΔQBD=ΔNDB

=>góc KBD=góc KDB

=>K nằm trên trung trực của BD(2)

Vì ABCD là hình thoi

nên AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng

b: Xét tứ giác BHDK có

BH//DK

BK//DH

BH=HD

=>BHDK là hình thoi