K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

a, Vì M là tung diểm của AB(tgt) => MA= 1/2 AB

         N là trng điểm của CD (tgt) => CN=1/2 CD

Lại có AB = CD => AM = CN 

          MÀ AM // CN (Vì AB//CD,\(M\)\(\in AB,N\in CD\))

AMCN là hbh

24 tháng 3 2021

A B C D M N F E

a, AB=CD(các cạnh đối bằng nhau theo từng đôi)

Mà M,N lần lượt là trung điểm AB, CD=> AM=BM=CN=DN

=>AM=CN

Vì AM=CN và AM//CN(AB//CD)=> AMCN là hình bình hành.

b, AMCN là hình bình hành=>AN//MC=>AE//MF

Tam giác ABE có: AE//MF và MA=MB=> EF=FB(tính chất đường trung bình) (1) => F là trung điểm BE.

c, AN//MC=>EN//FC

Tam giác DFC có: EN//FC và ND=NC=> DE=EF(tính chất đường trung bình) (2)

Từ (1) và (2)=>DE=EF=FB.

Dành cho những học siinh không làm được bài mò vào xem nè! Còn đúng hay sai mình không đảm bảo nha!!!

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔAEM có 

E là trung điểm của AB

EN//AM

Do đó; N là trung điểm của BM

=>BN=NM(1)

Xét ΔDNC có 

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

=>DM=MN(2)

Từ (1) và (2) suy ra DM=MN=NB

c: Xét ΔADM và ΔCBN có

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

DM=BN

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

mà EN=AM/2

và MF=CN/2

nên EN=MF

Xét tứ giác MENF có

NE//MF

NE=MF

Do đó: MENF là hình bình hành

15 tháng 8 2017

Vì tứ giác ABCD là hình bình hành nên:

- AB = CD => AM = CN

- AB // CD => AM //CN

Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.

b) chứng minh M, O, N thẳng hàng

* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.

Do đó, O là trung điểm AC

* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC

hay M, O, N thẳng hàng.

chuk hoc gioi