Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(3\right)=4\times3^2-5=31\)
\(f\left(-\frac{1}{2}\right)=4\times\left(-\frac{1}{2}\right)^2-5=-4\)
b) để f(x)=-1
<=>\(4x^2-5=-1\)
<=>\(4x^2=4\)
<=>\(x^2=1\)
<=>\(x=\orbr{\begin{cases}1\\-1\end{cases}}\)
Cho hàm số y = f(x) = 4x^2 +4y=f(x)=4x2+4. Tính f(-2)f(−2) ; f(2)f(2) ; f(4)f(4).
Đáp số:
f(-2) =f(−2)=
f(2) =f(2)=
f(4) =f(4)=
\(a.\)
Theo đề , ta có : \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\)
\(f\left(3\right)=4.\left(3\right)^2-5=31\)
\(f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b.\)
Ta có : \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Rightarrow4x^2=-1+5=4\)
\(\Rightarrow x^2=4:4=1\)
\(\Rightarrow x=\sqrt{1}=1\)
\(c.\)
Ta có :
\(f\left(x\right)=4x^2-5\)
\(\Rightarrow f\left(x\right)=4.\left(x\right)^2-5\) \(\left(1\right)\)
\(f\left(-x\right)=4.\left(-x\right)^2-5=4.\left(x\right)^2-5\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow f\left(x\right)=f\left(-x\right)\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
1. Do y tỉ lệ thuận với x,ta có công thức: y = kx (k là một hằng số khác 0) (k là hệ số tỉ lệ). Thay vào,ta có: \(y=f\left(x\right)=kx=\frac{1}{2}x\)
a) Để \(f\left(x\right)=5\) hay \(y=5\) thì \(y=f\left(x\right)=\frac{1}{2}x=5\Leftrightarrow\frac{x}{2}=5\Leftrightarrow x=10\)
b) Giả sử \(x_1>x_2\Rightarrow\frac{x_1}{2}>\frac{x_2}{2}\) hay \(\frac{1}{2}.x_1>\frac{1}{2}.x_2\) hay \(f\left(x_1\right)>f\left(x_2\right)\) (đpcm)
2. Do y tỉ lệ với x,ta có công thức y = kx (k là hằng số khác 0,là hệ số tỉ lệ). Thay vào,ta có công thức: \(y=f\left(x\right)=kx=12x\)
a) Tương tự bài 1
b) Ta có: \(f\left(-x\right)=12.\left(-x\right)\)
\(-f\left(x\right)=-12.x\)
Mà \(12.\left(-x\right)=-12.x\) suy ra \(f\left(-x\right)=-f\left(x\right)\) (đpcm)
\(f\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=f\left(x\right)\).
Câu c thôi nhé!
c) Ta có: \(f\left(x\right)=3x^2-1\left(1\right)\)
\(f\left(-x\right)=3\left(-x\right)^2-1=3x^2-1\left(2\right)\)
Từ 1 và 2 \(\Rightarrow f\left(x\right)=f\left(-x\right)\)
\(\rightarrowĐPCM.\)