Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, thay x=2, y=-2 vào y=ax^2 ta đc
-2=a*2^2
-2=4a
a=-1/2
phương trình trở thành
y=-1/2x^2
lập bảng vs x có 5 gt: -2;-1;0;1;2
tìm y theo x
kẻ đc bảng
b,gọi phương trình đường thẳng D là y=ax+b
do D song song với đường thẳng y=2x nên ta được:
a=2 và b khác 0
thay a=2 pt D trở thành
y=2x+b
do D tiếp xúc vs P nên ta đc
-1/2x^2=2x+b
-1/2x^2-2x-b=0
ta có: đenta'=1-b/2
mà D tiếp xúc vs P nên đenta' =0
1-b/2=0
b=2
vậy (D):y=2x+2
a) (P) là parabol đi qua gốc toạ độ O(0; 0) ; điểm (1; 1/2) và điểm (-1;1/2)
b) A \(\in\) (P) => yA = \(\frac{1}{2}\). xA2 = \(\frac{1}{2}\). (-1)2 = \(\frac{1}{2}\)=> A (-1; \(\frac{1}{2}\))
B \(\in\) (P) => yB = \(\frac{1}{2}\).xB2 = \(\frac{1}{2}\).4 = 2 => B (2; 2)
+) đường thẳng có hệ số góc bằng \(\frac{1}{2}\) có dạng y = \(\frac{1}{2}\)x + b (d)
A \(\in\) d => yA = \(\frac{1}{2}\).xA + b => \(\frac{1}{2}\) = \(\frac{1}{2}\). (-1) + b => b = 1
Vậy đường thẳng (d) có dạng y = \(\frac{1}{2}\)x + 1
Nhận xét: yB = \(\frac{1}{2}\).xB + 1 => B \(\in\) (d)
a) Hoàng độ giao điểm của (P) và (d) là nghiệm của phương trình:
ax2 = 2x -1 <=> ax2 - 2x + 1 = 0 (1)
Để (P) tiếp xúc với (d) thì (1) có nghiệm duy nhất
<=> \(\Delta'=0\)
<=> 1 - a= 0 <=> a = 1
=> nghiệm của (1) là x = 1/a = 1 => tung độ tiếp đểm y = 1
Vậy tiếp điểm là (1;1)
b) (d) không cắt (P) <=> (1) vô nghiệm
<=> \(\Delta'<0\)
<=> 1 - a < 0 <=> a > 1
Vậy với a > 1 thì d không cắt (P)