Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{-3}{\left(2x-1\right)^2}\)
Tiếp tuyến tại A và B cùng hệ số góc
\(\Leftrightarrow\dfrac{-3}{\left(2x_A-1\right)^2}=\dfrac{-3}{\left(2x_B-1\right)^2}\Leftrightarrow\left(2x_A-1\right)^2-\left(2x_B-1\right)^2=0\)
\(\Leftrightarrow\left(x_A-x_B\right)\left(x_A+x_B-1\right)=0\)
\(\Leftrightarrow x_A+x_B=1\) (do A ; B phân biệt nên \(x_A-x_B\ne0\))
\(\Rightarrow x_B=1-x_A\)
Ta có: \(A\left(x_A;\dfrac{x_A+1}{2x_A-1}\right)\) ; \(B\left(1-x_A;\dfrac{x_A-2}{2x_A-1}\right)\)
\(S_{OAB}=\dfrac{1}{2}\left|\left(x_A-x_O\right)\left(y_B-y_O\right)-\left(x_B-x_O\right)\left(y_A-y_O\right)\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left|x_A\left(\dfrac{x_A-2}{2x_A-1}\right)-\left(1-x_A\right)\left(\dfrac{x_A+1}{2x_A-1}\right)\right|=1\)
\(\Leftrightarrow\left|\dfrac{2x_A^2-2x_A-1}{2x_A-1}\right|=1\) \(\Leftrightarrow\left[{}\begin{matrix}2x_A^2-2x_A-1=2x_A-1\\2x_A^2-2x_A-1=1-2x_A\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x_A^2-4x_A=0\\2x_A^2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_A=0\\x_A=2\\x_A=1\\x_A=-1\end{matrix}\right.\) \(\Rightarrow k=...\)
Điều kiện: \(x\ne1\)
a) Xét phương trình: \(\frac{x^2-2mx+3m-2}{x-1}=0\Leftrightarrow x^2-2mx+3m-2=0\)\(\left(x-1\ne0\right)\)
Pt có hai nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow m^2-3m+2>0\Leftrightarrow\orbr{\begin{cases}m>2\\m< 1\end{cases}}\)
Khi đó \(\hept{\begin{cases}x_1=m-\sqrt{m^2-3m+2}\\x_2=m+\sqrt{m^2-3m+2}\end{cases}}\)
+) \(x_1,x_2\ne1\Leftrightarrow\hept{\begin{cases}m-\sqrt{m^2-3m+2}\ne1\\m+\sqrt{m^2-3m+2}\ne1\end{cases}\Leftrightarrow m\ne1}\)
+) Tiếp tuyến của đồ thị tại hai giao điểm với trục Ox vuông góc với nhau
\(\Leftrightarrow\hept{\begin{cases}y'\left(x_1\right)=-1\left(1\right)\\y'\left(x_2\right)=1\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\frac{\left(2x_1-2m\right)\left(x_1-1\right)-\left(x_1^2-2mx_1+3m-2\right)}{\left(x_1-1\right)^2}=-1\)
\(\Leftrightarrow\frac{m-1}{\left(x_1-1\right)^2}=2\Rightarrow m-1=2\left(m-\sqrt{m^2-3m+2}-1\right)^2\)
\(\Leftrightarrow\left(m-1\right)\left[1-2\left(2m-3-2\sqrt{m^2-3m+2}\right)\right]=0\)
\(\Leftrightarrow4\sqrt{m^2-3m+2}=4m-7\Leftrightarrow\hept{\begin{cases}m\ge\frac{7}{4}\\m=\frac{17}{8}\end{cases}}\Leftrightarrow m=\frac{17}{8}\)(t/m m>2 v m<1)
Giải (2) cho ra \(m=1\)(loại). Vậy m cần tìm là \(m=\frac{17}{8}.\)
\(y'=3x^2-6x\)
Do M thuộc (C) nên hệ số góc của tiếp tuyến tại M:
\(k=f\left(a\right)=3a^2-6a\)
\(f'\left(a\right)=6a-6>0;\forall a\in\left[2;3\right]\)
\(\Rightarrow f\left(a\right)\) đồng biến trên \(\left[2;3\right]\Rightarrow k_{max}\) khi \(a=3\)
\(\Rightarrow b=a^3-3a^2-1=-1\)
\(S=3-1=2\)
Ý tưởng thế này: tọa độ A, B thỏa mãn:
\(\left\{{}\begin{matrix}6x^2+6ax=6\\y=2x^3+3ax^2+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1-ax\\y=2x^3+3ax^2+b\end{matrix}\right.\)
\(\Rightarrow y=2x\left(1-ax\right)+3a\left(1-ax\right)+b\)
\(\Rightarrow y=-2ax^2+2x-3a^2x+3a+b\)
\(\Rightarrow y=-2a\left(1-ax\right)+2x-3a^2x+3a+b\)
\(\Rightarrow y=\left(2-a^2\right)x+a+b\)
\(\Rightarrow\left(2-a^2\right)x-y+a+b=0\)
Đây chính là pt AB theo a;b
Từ khoảng cách \(\Rightarrow\dfrac{\left|a+b\right|}{\sqrt{\left(2-a^2\right)^2+1}}=1\Leftrightarrow\left(a+b\right)^2=\left(2-a^2\right)^2+1\)
\(\Leftrightarrow\left(a+b\right)^2=a^4-4a^2+5\)
\(\Leftrightarrow2a^2+\left(a+b\right)^2=a^4-2a^2+5=\left(a^2-1\right)^2+4\ge4\)
25.
H là hình chiếu của S lên (ABC)
Do \(SA=SB=SC\Rightarrow HA=HB=HC\)
\(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC
26.
\(\left\{{}\begin{matrix}AB\perp BC\\AB\perp CD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\) \(\Rightarrow AB\perp BD\)
\(\Rightarrow\Delta ABD\) vuông tại B
Pitago tam giác vuông BCD (vuông tại C):
\(BC^2+CD^2=BD^2\Rightarrow BD^2=b^2+c^2\)
Pitago tam giác vuông ABD:
\(AD^2=AB^2+BC^2=a^2+b^2+c^2\)
\(\Rightarrow AD=\sqrt{a^2+b^2+c^2}\)
23.
Gọi H là chân đường cao hạ từ S xuống BC
\(\Rightarrow BH=SB.cos30^0=3a\) ; \(SH=SB.sin30^0=a\sqrt{3}\) ; \(CH=4a-3a=a\)
\(\Rightarrow BC=4HC\Rightarrow d\left(B;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)
Từ H kẻ \(HE\perp AC\) ; từ H kẻ \(HF\perp SE\Rightarrow HF\perp\left(SAC\right)\)
\(\Rightarrow HF=d\left(H;\left(SAC\right)\right)\)
\(HE=CH.sinC=\frac{CH.AB}{AC}=\frac{a.3a}{5a}=\frac{3a}{5}\)
\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{SH^2}\Rightarrow HF=\frac{HE.SH}{\sqrt{HE^2+SH^2}}=\frac{3a\sqrt{7}}{14}\)
\(\Rightarrow d\left(B;\left(SAC\right)\right)=4HF=\frac{6a\sqrt{7}}{7}\)
24.
\(SA=SC\Rightarrow SO\perp AC\)
\(SB=SD\Rightarrow SO\perp BD\)
\(\Rightarrow SO\perp\left(ABCD\right)\)
Theo mình không tìm được cụ thể a,b đâu, bởi nó còn thiếu 1 pt nữa
\(A\left(a;a^3-3a^2+2a+1\right);B\left(b;b^3-3b^2+2b+1\right)\)
\(k_A=k_B\Leftrightarrow y'\left(a\right)=y'\left(B\right)\Leftrightarrow3a^2-6a+2=3b^2-6b+2\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-2\left(a-b\right)=0\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\left(loai\right)\\a+b=2\end{matrix}\right.\)
Cảm ơn bạn nhiều nhé!!