Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2-2x+4=2mx-m^2\)
=>\(x^2-2x+4-2mx+m^2=0\)
=>\(x^2-x\left(2m+2\right)+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>8m-12>0
=>8m>12
=>\(m>\dfrac{3}{2}\)
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)
=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)
=>\(x_1^2-2x_1x_2+x_2^2=4\)
=>\(\left(x_1-x_2\right)^2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)
=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)
=>\(4m^2+8m+4-4m^2-16=4\)
=>8m-12=4
=>8m=16
=>m=2(nhận)
Pt hoành độ giao điểm: \(x^2-2mx+m=2x-1\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+m+1=0\)
\(\Delta'=\left(m+1\right)^2-\left(m+1\right)>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\) (1)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_2^2\le12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le12\)
\(\Leftrightarrow4\left(m+1\right)^2-2\left(m+1\right)-12\le0\)
\(\Leftrightarrow2m^2+3m-5\le0\Rightarrow-\frac{5}{2}\le m\le1\) (2)
Kết hợp (1); (2) \(\Rightarrow\left[{}\begin{matrix}-\frac{5}{2}\le m< -1\\0< m\le1\end{matrix}\right.\)
Nếu d:y=m cắt (C): y=\(x^3 -x^2 +2\) tại hai điểm phân biệt có hoành độ \(x_1 ,x_2 ,x_3\) thì S=bằng
Phương trình hoành độ giao điểm:
\(x^2+6x=2x-m+2\Leftrightarrow x^2+4x+m-2=0\) (1)
\(\Delta'=4-\left(m-2\right)=6-m>0\Rightarrow m< 6\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m-2\end{matrix}\right.\)
\(x_1^3+x_2^3\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\ge4\)
\(\Leftrightarrow\left(-4\right)^3+12\left(m-2\right)\ge4\)
\(\Leftrightarrow12m\ge92\Rightarrow m\ge\frac{23}{3}\)
Vậy ko tồn tại m thỏa mãn?