\(\dfrac{x+2}{x-1}\)

a) Tính giá trị của biến để vế phải có nghĩa

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

$a)$ Để $VP$ có nghĩa thì $x-1\ne0 \Leftrightarrow x\ne1$ 

$b)$ Ta có $f(7)=\frac{9}{6}=\frac{3}{2}$

14 tháng 11 2018

a)  x khác 1

b) f(7)=\(\frac{3}{2}\)

c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3

d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)

f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}

         

x-1-113-3
x024-2

e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1

    
     
21 tháng 4 2016

a/ để vế phải có nghĩa thì x-1>0 nên x>1

21 tháng 4 2016

Dễ thế còn gì

30 tháng 6 2017

a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)

b. Thay số vào rồi tính là ra nhé bạn.

c. \(f\left(x\right)=\frac{1}{4}\)

\(\frac{x+2}{x-1}=\frac{1}{4}\)

4(x + 2) = x - 1

4x + 8 = x - 1

4x - x = -1 - 8

3x = -9

x = -3

d. \(f\left(x\right)\in Z\)

\(\Rightarrow\frac{x+2}{x-1}\in Z\)

\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)

\(\Rightarrow1+\frac{3}{x-1}\in Z\)

\(\Rightarrow\frac{3}{x-1}\in Z\)

Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)

Ta có bảng sau:

x - 1-1-313
x0-224

Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)

e. f(x) > 0

\(\Leftrightarrow\frac{x+2}{x-1}>0\)

\(\Rightarrow1+\frac{3}{x-1}>0\)

\(\Rightarrow\frac{3}{x-1}>-1\)

\(\Rightarrow x-1>-3\)

\(\Rightarrow x>-2\)

9 tháng 4 2018

a, Để f(x) xác định \(\Rightarrow\) \(x-1\ne0\Leftrightarrow x\ne1\)

b, Ta có: Do x=7 t/m ĐKXĐ của f(x) nên ta có:

\(f\left(7\right)=\dfrac{7+2}{7-1}=\dfrac{9}{6}=1,5\)

c, Theo đề bài ta có:

\(f\left(x\right)=\dfrac{x+2}{x-1}=\dfrac{1}{4}\Leftrightarrow4\left(x+2\right)=x-1\Leftrightarrow4x+8=x-1\Leftrightarrow4x-x=8+1\Leftrightarrow3x=9\Leftrightarrow x=3\)

Do x=3 t/m ĐKXĐ nên x=3.

d, Để f(x) có GT nguyên thì \(\dfrac{x+2}{x-1}\) nguyên\(\Rightarrow\dfrac{x-1+3}{x-1}=1+\dfrac{3}{x-1}\) nguyên \(\Rightarrow\dfrac{3}{x-1}\) nguyên \(\Rightarrow x-1\) là ước nguyên của 3 \(\Rightarrow x-1\in\left\{-3;-1;1;3\right\}\)

Ta có bảng sau:

x-1 -3 -1 1 3
x

-2

0 2 4

Vậy \(x\in\left\{-2;0;2;4\right\}\)

e, CHỊU ( ͡° ͜ʖ ͡°)

10 tháng 4 2018

Thanks for answering questions a, b, c, d ( ͡ᵔ ͜ʖ ͡ᵔ )

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)

4 tháng 3 2020

Để VP có nghiã thì \(x-2\ne0\)

\(\Rightarrow x\ne2\)

6 tháng 7 2019

Giải: a) Để VP có nghĩa <=>  x - 1 \(\ne\)0 <=> x \(\ne\)1

b) Ta có: f(7) = \(\frac{7+2}{7-1}=\frac{9}{6}=\frac{3}{2}\)

f(-3) = \(\frac{-3+2}{-3-1}=\frac{-1}{-4}=\frac{1}{4}\)

c) Ta có: f(x) = 1/4

=> \(\frac{x+2}{x-1}=\frac{1}{4}\)

=> (x + 2).4 = x - 1

=> 4x + 8 = x - 1

=> 4x - x = -1 - 8

=> 3x = -9

=> x = -9 : 3

=> x = -3

d) Ta có: f(x) =  \(\frac{x+2}{x-1}=\frac{\left(x-1\right)+3}{x-1}=1+\frac{3}{x-1}\)

Để f(x)  \(\in\)Z <=> 3 \(⋮\)x - 1 <=> x - 1 \(\in\)Ư(3) = {1; -1; 3; -3}

+) x - 1 = 1 => x = 1  + 1 = 2

+) x - 1 = -1 => x = -1 + 1 = 0

+) x - 1 = 3 => x = 3 + 1 = 4

+) x - 1 = -3 => x = -3 + 1 = -2

6 tháng 7 2019

a) x + 2x - 1 = 0

<=> 3x - 1 = 0

<=> 3x = 0 + 1

<=> 3x = 1

<=> x = 1/3

=> x = 1/3

b) f(7) = x + 2x - 1 = 7 + 2.7 - 1 = 20 

=> f(7) = 20

f(-3) = (-3) + 2.(-3) - 1 = -10

=> f(-3) = -10

c) x + 2x - 1 = 14

<=> 3x - 1 = 14

<=> 3x = 14 + 1

<=> 3x = 15

<=> x = 5

=> x = 5