Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số xác định với mọi \(x\ne1\). Ta có : \(y'=\frac{-4}{\left(x-1\right)^2}\)
Gọi \(M\left(x_0;y_0\right);\left(x_0\ne1\right)\) là tiếp điểm, suy ra phương trình tiếp tuyến của (C) :
\(\Delta:y=\frac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{2x_0+2}{x_0-1}\)
a) Vì tiếp tuyến có hệ số góc bằng -4 nên ta có :
\(\frac{4}{\left(x_0-1\right)^2}=-16\Leftrightarrow\left[\begin{array}{nghiempt}x_0=\frac{3}{2}\\x_0=\frac{1}{2}\end{array}\right.\)
* \(x_0=\frac{3}{2}\Rightarrow y_0=10\Rightarrow\Delta=-16\left(x-\frac{3}{2}\right)+10\) hay \(y=-16x+22\)
* \(x_0=\frac{1}{2}\Rightarrow y_0=-6\Rightarrow\Delta=-16\left(x-\frac{1}{2}\right)-6\) hay \(y=-16x+2\)
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
a. Ta có : \(y'=3x^2-6x+2\)
\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)
Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)
b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :
\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)
Vậy phương trình tiếp tuyến là :
\(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)
c. PTHD giao điểm của (C) với Ox :
\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)
* \(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)
* \(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)
* \(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)
Gọi \(M\left(x_0;\frac{2x_0-1}{x_0-1}\right);x_0\ne-1\) là tiếp điểm.
Theo đề bài ta có MA = 2
hay \(x^2_0+\left(\frac{2x_0-1}{x_0+1}-1\right)^2=4\Leftrightarrow x^2_0+\left(\frac{x_0-2}{x_0+1}\right)^2=4\)
\(\Leftrightarrow x_0\left(x_0-2\right)\left(x^2_0+4x_0+6\right)=0;\left(x_0\ne-1\right)\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)
* Với \(x_0=0\), phương trình tiếp tuyến là \(y=y'\left(0\right)\left(x-0\right)+y\left(0\right)\) hay \(y=3x-1\)
* Với \(x_0=2\), phương trình tiếp tuyến là \(y=y'\left(2\right)\left(x-2\right)+y\left(2\right)\) hay \(y=\frac{1}{3}x+\frac{1}{3}\)
Vậy có tiếp tuyến thỏa mãn bài toán \(y=\frac{1}{3}x+\frac{1}{3}\) và \(y=3x-1\)
Thay \(x=1\Rightarrow2f\left(2\right)+3f\left(2\right)=10\Rightarrow f\left(2\right)=5\)
Đạo hàm 2 vế giả thiết:
\(-6f'\left(5-3x\right)+3f'\left(x+1\right)=2x+4\)
Thay \(x=1\)
\(-6f'\left(2\right)+3f'\left(2\right)=6\Rightarrow f'\left(2\right)=-2\)
Phương trình tiếp tuyến:
\(y=-2\left(x-2\right)+5=-2x+9\)
\(y'=\dfrac{-4}{\left(x-1\right)^2}< 0\Rightarrow\) tiếp tuyến luôn có hệ số góc âm
Do tiếp tuyến tạo với trục tọa độ 1 tam giác vuông cân \(\Rightarrow\) nó có hệ số góc \(-1\)
Gọi tọa độ tiếp điểm là \(x_0\Rightarrow\dfrac{-4}{\left(x_0-1\right)^2}=-1\)
\(\Rightarrow\left(x_0-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y_0=3\\x_0=-1\Rightarrow y_0=-1\end{matrix}\right.\)
Phương trình: \(\left[{}\begin{matrix}y=-\left(x-3\right)+3\\y=-\left(x+1\right)-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x+6\\y=-x-2\end{matrix}\right.\)
\(f'\left(x\right)=2x+2\)
Gọi \(x_0\) là hoành độ tiếp điểm, do tiếp tuyến tạo với trục Ox một góc 45 độ
\(\Rightarrow\) Tiếp tuyến có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=2x_0+2=1\\f'\left(x_0\right)=2x_0+2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\Rightarrow y_0=\dfrac{1}{4}\\x_0=-\dfrac{3}{2}\Rightarrow y_0=\dfrac{1}{4}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=1\left(x+\dfrac{1}{2}\right)+\dfrac{1}{4}\\y=-1\left(x+\dfrac{3}{2}\right)+\dfrac{1}{4}\end{matrix}\right.\)