Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overrightarrow {OM} = \left( {2;1} \right),\overrightarrow {MN} = \left( { - 3;2} \right),\overrightarrow {MP} = \left( {2;1} \right)\)
b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP} = - 3.2 + 2.1 = - 4\)
c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
d) Ta có: \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)
e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)
Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)
a) \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}=2\left(3;-4\right)+3\left(2;5\right)=\left(6;-8\right)+\left(6;15\right)\)\(=\left(12;7\right)\).
b) \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}=\left(3;-4\right)-\left(2;5\right)=\left(1;-9\right)\).
c) Hai véc tơ \(\overrightarrow{c}=\left(m;10\right)\) và \(\overrightarrow{v}\) cùng phương khi và chỉ khi:
\(\dfrac{m}{2}=\dfrac{10}{5}=2\Rightarrow m=4\).
Tham khảo:
a) Ta có: \(\overrightarrow b = \left( {4; - 1} \right)\) và \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)
\( \Rightarrow 2\;\overrightarrow a - \overrightarrow b = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)
Lại có: M (-3; 6), N(3; -3)
\( \Rightarrow \overrightarrow {MN} = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)
Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN} = 3\left( {2\;\overrightarrow a - \overrightarrow b } \right)\)
b) Ta có: \(\overrightarrow {OM} = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON} = \left( {3; - 3} \right)\) (do N (3; -3)).
Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).
Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.
Vậy chúng không thẳng hàng.
c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM} = \overrightarrow {PN} \).
Do \(\overrightarrow {OM} = \left( { - 3;6} \right),\;\overrightarrow {PN} = \left( {3 - x; - 3 - y} \right)\) nên
\(\overrightarrow {OM} = \overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 = - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 9\end{array} \right.\)
Vậy điểm cần tìm là P (6; -9).
a) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2}\)
\( \Leftrightarrow {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2} \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b + {\left( {\overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)
\( \Leftrightarrow {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)
\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)
\( \Leftrightarrow 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)
\( \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 0^\circ \)
Vậy \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow \overrightarrow a , \,\overrightarrow b \) cùng hướng.
b) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a - \overrightarrow b } \right|^2}\)
\( \Leftrightarrow {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2}\)
\( \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b + {\left( {\overrightarrow b } \right)^2} = {\left( {\overrightarrow a } \right)^2} - 2\overrightarrow a .\overrightarrow b + {\left( {\overrightarrow b } \right)^2}\)
\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b = - 2\overrightarrow a .\overrightarrow b \Leftrightarrow 4\overrightarrow a .\overrightarrow b = 0\)
\( \Leftrightarrow \overrightarrow a .\overrightarrow b = 0 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)
Vậy \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right| \Leftrightarrow \overrightarrow a ,\overrightarrow b \) vuông góc với nhau.
a) \(\dfrac{2}{-10}=\dfrac{3}{-15}\) nên hai véc tơ \(\overrightarrow{a};\overrightarrow{b}\) cùng phương.
\(\left(-10;-15\right)=-5\left(2;3\right)\Rightarrow\overrightarrow{b}=-5\overrightarrow{a}\) nên hai véc tơ \(\overrightarrow{a};\overrightarrow{b}\) ngược hướng.
b) \(\left(0;8\right)=\dfrac{8}{7}\left(0;7\right)\) nên \(\overrightarrow{v}=\dfrac{8}{7}\overrightarrow{u}\) nên hai véc tơ \(\overrightarrow{u};\overrightarrow{v}\) cùng hướng.
c) \(\left(-6;3\right)=3\left(-2;1\right)\) nên \(\overrightarrow{n}=3\overrightarrow{m}\) nên hai véc tơ \(\overrightarrow{m};\overrightarrow{n}\) cùng phướng và cùng hướng.
d) Hai véc tơ cùng phương và cùng hướng.
e) \(\overrightarrow{e}\) cùng hướng với véc tơ \(\overrightarrow{j}\); \(\overrightarrow{f}\) cùng hướng với véc tơ \(\overrightarrow{i}\).
Nên hai veca tơ \(\overrightarrow{e}\) và \(\overrightarrow{f}\) không cùng phương.
a) Ta có
\(\begin{array}{l}\overrightarrow m + \overrightarrow n = \left( {\left( { - 6 + 0} \right);1 + 2} \right) = ( - 6;3)\\\overrightarrow m - \overrightarrow n = \left( {\left( { - 6 - 0} \right);\left( {1 - 2} \right)} \right) = \left( { - 6; - 1} \right)\\10\overrightarrow m = (10.( - 6);10.1) = ( - 60;10)\\ - 4\overrightarrow n = (( - 4).0;( - 4).2) = (0; - 8)\end{array}\)
b) Ta có
\(\overrightarrow m .\overrightarrow n = ( - 6).0 + 1.2 = 0 + 2 = 2\)
Ta có \(10\overrightarrow m = ( - 60;10)\) và \( - 4\overrightarrow n = (0; - 8)\) nên \(\left( {10\overrightarrow m } \right).\left( { - 4\overrightarrow n } \right) = ( - 60).0 + 10.( - 8) = 0 - 80 = - 80\)