K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

\(Ta \) \(có : x^2 +y^2 +xy = 1\)

\(\Leftrightarrow\)\(xy = 1 - x^2 - y^2\)

\(Thay \)  \(xy = 1 - x^2 - y^2 \)  \(vào \)  \(P , ta \) \(được :\)

\(P = 1 - x^2 -y^2\)

\(P = 1 - ( x^2 +y^2 )\)

\(P = - ( x^2 +y^2 )+ 1\)\(\le\)\(1\)

\(Dấu "=" xảy \) \(ra\)  \(\Leftrightarrow\)\(x^2+y^2 =0\)

\(\Leftrightarrow\)\(x = 0 \) \(và\)  \(y = 0\)

\(Max \)  \(P = 1 \)\(\Leftrightarrow\)\(x = 0 ; y = 0\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

NV
12 tháng 3 2021

\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)

\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)

\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị

 

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

Áp dụng BĐT Cauchy-Shwarz:

$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$

$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$

$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$

Vậy $B_{\min}=(1+\sqrt{3})^2$

Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$

NV
21 tháng 5 2019

\(2\sqrt{xy}\le x+y\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

\(A=xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4=\frac{17}{4}\)

\(\Rightarrow A_{min}=\frac{17}{4}\) khi \(x=y=\frac{1}{2}\)

b/ \(2y=xy-x=x\left(y-1\right)\Rightarrow x=\frac{2y}{y-1}=2+\frac{2}{y-1}\)

Đồng thời \(x;y>0\Rightarrow2y=x\left(y-1\right)>0\Rightarrow y-1>0\)

\(\Rightarrow S=2+\frac{2}{y-1}+2y=4+\frac{2}{y-1}+2\left(y-1\right)\ge4+2\sqrt{\frac{4\left(y-1\right)}{y-1}}=8\)

\(\Rightarrow S_{min}=8\) khi \(\frac{2}{y-1}=2\left(y-1\right)\Rightarrow y=2\Rightarrow x=4\)

NV
21 tháng 5 2019

c/ \(x+y+xy\ge7\Leftrightarrow x\left(y+1\right)\ge7-y\Leftrightarrow x\ge\frac{7-y}{y+1}=\frac{8}{y+1}-1\)

\(\Rightarrow S=x+2y\ge2y+\frac{8}{y+1}-1=2\left(y+1\right)+\frac{8}{y+1}-3\)

\(\Rightarrow S\ge2\sqrt{\frac{16\left(y+1\right)}{y+1}}-3=5\)

\(\Rightarrow S_{min}=5\) khi \(\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)