Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt}\)\(x=a+b\ge2\)
\(P=\frac{a^2+b^2+5}{a+b+3}=\frac{a^2+b^2+2.1+3}{a+b+3}=\frac{a^2+b^2+2ab+3}{a+b+3}=\frac{\left(a+b\right)^2+3}{a+b+3}=\frac{x^2+3}{x+3}\)
\(\Rightarrow P-\frac{7}{5}=\frac{x^2+3}{x+3}-\frac{7}{5}=\frac{\left(5x^2+15\right)-\left(7x+21\right)}{x+3}=\frac{\left(x-2\right).\left(5x+3\right)}{x+3}\ge0\)
\(\text{Vậy giá trị nhỏ nhất của}\)\(P=\frac{7}{5}\Rightarrow x=2\)
\(\Rightarrow a+b=2;ab=1\)
\(\Rightarrow a=b=1\)
\(P=a^2+b^2+\frac{5}{a+b+3}\left(a,b>0\right)\)..
\(P=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\right)-\frac{20}{a+b+3}\).
Trước hết, ta chứng minh được:
\(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)với \(x,y,z\in R;m,n,p>0\)\(\left(1\right)\)(tự chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\).
Áp dụng bất đẳng thức \(\left(1\right)\)với \(a,b>0\), ta được:
\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\ge\frac{\left(a+b+5\right)^2}{1+1+a+b+3}=\frac{\left(a+b+5\right)^2}{a+b+5}\)\(=a+b+5\).
\(\Leftrightarrow a^2+b^2+\frac{5^2}{a+b+3}-\frac{20}{a+b+3}\ge a+b+5-\frac{20}{a+b+3}\).
\(\Leftrightarrow P\ge a+b+5-\frac{20}{a+b+3}\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{1}=\frac{b}{1}=\frac{5}{a+b+3}=\frac{a+b+5}{1+1+a+b+3}=1\).
\(\Leftrightarrow a=b=1\).
Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a+b\ge2\sqrt{ab}\).
\(\Leftrightarrow a+b\ge2.\sqrt{1}=2.1=2\)(vì \(ab=1\)).
\(\Leftrightarrow a+b+3\ge5\).
\(\Rightarrow\frac{1}{a+b+3}\le\frac{1}{5}\).
\(\Rightarrow\frac{-1}{a+b+3}\ge-\frac{1}{5}\).
\(\Leftrightarrow\frac{-20}{a+b+3}\ge\frac{-20}{5}=-4\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Ta lại có: \(a+b\ge2\)(chứng minh trên).
\(\Leftrightarrow a+b+5\ge7\left(4\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Từ \(\left(3\right)\)và \(\left(4\right)\), ta được:
\(a+b+5-\frac{20}{a+b+3}\ge7-4=3\left(5\right)\).
Từ \(\left(2\right)\)và \(\left(5\right)\), ta được:
\(P\ge3\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Vậy \(minP=3\Leftrightarrow a=b=1\).
Cho hai số a,b thỏa mãn a^2+b^2=1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: A=a^6+b^6
\(A=a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)
\(=\left(a^2+b^2\right)\left(a^4+b^4-a^2b^2\right)\)
\(=1.\left[\left(a^4+b^4+2a^2b^2\right)-3a^2b^2\right]\)
\(=\left(a^2+b^2\right)^2-3a^2b^2\)
\(=1^2-3a^2b^2\)
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\frac{a^2+b^2}{2}\ge ab\)
\(\Rightarrow ab\le1:2=0,5\Rightarrow3a^2b^2\le\frac{3}{4}\)
\(\Rightarrow A=1^2-3a^2b^2\ge1-\frac{3}{4}=\frac{1}{4}\)
\(\Rightarrow MinA=\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy ...
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+4\geq 4b$
$\Rightarrow a^2+b^2\geq 2a+4b-5$
$\Rightarrow P\geq 2a+4b-5+\frac{1}{a+b}+\frac{1}{b}$
$=\frac{a+b}{9}+\frac{1}{a+b}+(\frac{b}{4}+\frac{1}{b})+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}a+\frac{131}{36}b-5$
$=\frac{2}{3}+1+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq \frac{2}{3}+1+\frac{17}{9}+\frac{131}{36}.2-5=\frac{35}{6}$
Vậy $P_{\min}=\frac{35}{6}$ khi $a=1; b=2$
https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966
Làm bừa thôi nhé:)
\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\)
\(\ge\sqrt{2\sqrt{a^2.\frac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\frac{1}{b^2}}}\)
\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
Dấu "=" xảy ra khi: \(a=b=1\)
bổ sung thêm đk a+b=4
áp dụng bđt Bunhiacopxki ta có:
\(\hept{\begin{cases}\sqrt{a^2+\frac{1}{a^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(a^2+\frac{1}{a^2}\right)\cdot\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4a+\frac{1}{a}\right)\\\sqrt{b^2+\frac{1}{b^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(4^2+1\right)}\ge\frac{1}{\sqrt{17}}\left(4b+\frac{1}{b}\right)\end{cases}}\)
khi đó ta được \(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)
ta để sy thấy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)do đó áp dụng bđt Cauchy vfa giả thiết ta được
\(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\frac{4}{a+b}\right]=\frac{1}{\sqrt{17}}\left[\frac{a+b}{4}+\frac{4}{a+b}+\frac{15\left(a+b\right)}{4}\right]\)\(\ge\frac{1}{\sqrt{17}}\left[2+15\right]=\sqrt{17}\)
dấu đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{a}{4}=\frac{1}{a}\\\frac{b}{4}=\frac{1}{b}\end{cases}\Leftrightarrow a=b=2}\)
vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a ∀mọi x (1)
vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x (2)
từ 1 và 2 ⇒ a2+b2 ≥ 2a+2b
⇒ A≥ 2(a+b)=2
dấu''=' xảy ra khi a=b=1/2