K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{3}>\frac{m}{n}\Rightarrow3>\frac{m^2}{n^2}\Rightarrow3n^2>m^2\Rightarrow3n^2\ge m^2+1\)

với 3n2=m2+1=>m2+1 chia hết cho 3

=>m2 chia 3 dư 2(vô lí)

\(\Rightarrow3n^2\ge m^2+2\)

lại có:\(\left(m+\frac{1}{2m}\right)^2=m^2+1+\frac{1}{4m^2}< m^2+2\)

\(\Rightarrow\left(m+\frac{1}{2m}\right)^2< 3n^2\Rightarrow m+\frac{1}{2m}< \sqrt{3}n\)

\(\Rightarrow\frac{m}{n}+\frac{1}{2mn}< \sqrt{3}\left(Q.E.D\right)\)

29 tháng 11 2019

Áp dụng BĐT: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

Ta có: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow0\le a+b+c\le3\) ( vì a,b,c > 0 ) (Dấu ''='' xảy ra khi và chỉ khi a = b = c.)

\(\Rightarrow0\le a+b\le3-c\) (1)

Đặt \(A=\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{8-2\sqrt{ab}}+\frac{1}{8-2\sqrt{bc}}+\frac{1}{8-2\sqrt{ca}}\)

Áp dụng Côsi cho hai số dương a, b ta được:

\(2\sqrt{ab}\le a+b\Rightarrow8-2\sqrt{ab}\ge8-\left(a+b\right)\) (2)

Từ (1) và (2) suy ra

29 tháng 11 2019

giải nhầm sorry

9 tháng 10 2016

Bài 1:

Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

xong bn áp dụng lên trên lm tiếp

9 tháng 10 2016

Bài 3:

theo bđt cô si ta có:

\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)

=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)                         (1)

Tương tự ta có :

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)                            (2)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)                               (3)

Cộng vế vs vế (1)(2)(3) ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

NV
11 tháng 3 2019

Khi các căn thức đều xác định, áp dụng BĐT Bunhia:

\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\le\sqrt{\left(a^2+b^2+c^2\right)\left(3-\left(a^2+b^2+c^2\right)\right)}\)

\(\le\frac{a^2+b^2+c^2+3-\left(a^2+b^2+c^2\right)}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi

\(a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\Leftrightarrow a^2+b^2+c^2=\frac{3}{2}\) (đpcm)

NV
15 tháng 4 2019

\(VT=\sum\frac{x}{x+\sqrt{\left(xy+xz+yz\right)x+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\sum\frac{x}{x+\sqrt{\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{z}^2+\sqrt{x}^2\right)}}\)

\(\Rightarrow VT\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{yz}\right)^2}}=\sum\frac{x}{x+\sqrt{xz}+\sqrt{yz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 6 2017

a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)

<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)

<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)

<=>\(a+b\ge2\sqrt{ab}\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)

NV
4 tháng 3 2019

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)