K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Đề sai: Thế \(a=b=0,1\) là thấy

30 tháng 5 2018

Câu này ở trong đề chuyên toán trường phổ thông năng khiếu ở HCM năm nay này.

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

8 tháng 8 2019

a, \(BĐT\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng vì a,b>0)

Dấu "=" xảy ra <=> a=b

b, Áp dụng bđt câu a ta có: \(a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

=>\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 bđt vế theo vế ta được:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

7 tháng 8 2017

Bài 3:

Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)

\(=2+2+2=6\)

Dấu " = " khi x = y = z = 1

Vậy...

7 tháng 8 2017

3. Với x,y,z>0 áp dụng BĐT Cauchy ta có

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)

\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)

1. Với a=b=c=0, ta thấy BĐT trên đúng

Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương

\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)

Cộng (1), (2), (3) vế theo vế:

\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)

Do đó BĐT trên đúng \(\forall a,b,c\ge0\)

6 tháng 3 2018

Ta có:
\(\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}=\frac{ab\left(a^2-b^2\right)}{a^3+b^3}=\frac{ab\left(a-b\right)}{a^2-ab+b^2}=\frac{a-b}{\frac{a}{b}+\frac{b}{a}-1}\ge\frac{a-b}{\frac{a}{b}+\frac{a}{a}-1}=\frac{b\left(a-b\right)}{a}\)
\(\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}=\frac{bc\left(b^2-c^2\right)}{b^3+c^3}=\frac{bc\left(b-c\right)}{b^2-bc+c^2}=\frac{b-c}{\frac{b}{c}+\frac{c}{b}-1}\ge\frac{b-c}{\frac{a}{c}+\frac{b}{b}-1}=\frac{c\left(b-c\right)}{a}\)
\(\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}=\frac{ca\left(c^2-a^2\right)}{c^3+a^3}=\frac{ca\left(c-a\right)}{c^2-ca+a^2}=\frac{c-a}{\frac{c}{a}+\frac{a}{c}-1}\ge\frac{c-a}{\frac{a}{c}+\frac{a}{a}-1}=\frac{c\left(c-a\right)}{a}\)
\(\Rightarrow\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}+\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}+\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}\ge\frac{b\left(a-b\right)+c\left(c-a\right)+c\left(b-c\right)}{a}=\frac{ab-b^2-ac+bc}{a}=\frac{\left(a-b\right)\left(b-c\right)}{a}\ge0\)
\(\Leftrightarrow\frac{a^3b}{a^3+b^3}+\frac{b^3c}{b^3+c^3}+\frac{c^3a}{c^3+a^3}\ge\frac{ab^3}{a^3+b^3}+\frac{bc^3}{b^3+c^3}+\frac{ca^3}{c^3+a^3}\left(đpcm\right)\)