\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến

7 tháng 4 2019

Vì a ; b là các số thực dương , áp dụng BĐT Cô - si cho 2 số dương , ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\) ( do ab = 1 )

\(\Rightarrow A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge2\left(a+b+1\right)+\frac{4}{a+b}=2\left(a+b\right)+2+\frac{4}{a+b}\)

\(=a+b+\frac{4}{a+b}+a+b+2\ge2\sqrt{\frac{\left(a+b\right).4}{a+b}}+2\sqrt{ab}+2=2.2+2+2=8\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)

16 tháng 4 2018

ta có P2 = (\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\))2

= \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.\dfrac{bc}{a}.\dfrac{ac}{b}+2.\dfrac{ac}{b}.\dfrac{ab}{c}+2.\dfrac{bc}{a}.\dfrac{ab}{c}\)

= \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.\left(a^2+b^2+c^2\right)\)

=\(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.1\)

nhận thấy \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}\ge0\)

==> P2 \(\ge2\) ==> p \(\ge\) \(\sqrt{2}\)

dấu ''='' xảy ra ............

vậy.............

p/s : mk lm bừa

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

13 tháng 9 2021

Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\)  ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Mà \(a^2+b^2+c^2=3abc\)

=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)

=> \(a+b+c\ge3\)

Áp dụng bđt bunhia dạng phân thức ta có:

\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)

Đặt \(a+b+c=x\left(x\ge3\right)\)

=> \(M\ge\frac{x^2}{x+6}\)

Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)

<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)

<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)

=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)

=>\(MinM=1\)xảy ra khi a=b=c=1

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=a-\frac{ab(a+b)}{a^2+ab+b^2}+b-\frac{bc(b+c)}{b^2+bc+c^2}+c-\frac{ca(c+a)}{c^2+ca+a^2}\)

\(=a+b+c-\left(\frac{ab(a+b)}{a^2+ab+b^2}+\frac{bc(b+c)}{b^2+bc+c^2}+\frac{ca(c+a)}{c^2+ca+a^2}\right)\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq a+b+c-\left(\frac{ab(a+b)}{2ab+ab}+\frac{bc(b+c)}{2bc+bc}+\frac{ca(c+a)}{2ac+ac}\right)\)

\(\Leftrightarrow \text{VT}\geq a+b+c-\frac{2}{3}(a+b+c)=\frac{a+b+c}{3}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

29 tháng 5 2018

Xin câu 1 ạ !

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v