Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\widehat{xOy}\)và \(\widehat{x'Oy'}\) là 2 góc đối đỉnh => \(\widehat{xOy}\)= \(\widehat{x'Oy'}\)
Ot là tia đối của Oz => \(\widehat{xOz}\)= \(\widehat{x'Ot}\) (hai góc đối đỉnh)(1)
\(\widehat{yOz}\)= \(\widehat{tOy'}\) (hai góc đối đỉnh)(2)
vì Oz là tia phân giác của \(\widehat{xOy}\) => \(\widehat{xOz}\)= \(\widehat{yOz}\)(3)
Từ (1),(2),(3) => \(\widehat{x'Ot}\)= \(\widehat{tOy'}\)=> Ot là tia phân giác của \(\widehat{x'Oy'}\)
Chúc bạn học tốt nha!
Bài 1:
a: góc zOy'=góc xOy'/2=(180-110)/2=35 độ
góc x'Oy=180-110=70 độ
=>góc yOt=70/2=35 độ
b: Vì góc xOz=góc x'Ot
nên góc x'Ot+góc x'Oz=180 độ
=>Ot và Oz là hai tia đối nhau
a) Ta có:
x'Oy = xOy' ( hai góc đói đỉnh )
Vì Oz là tia phân giác của x'Oy nên x'Oz = x'Oy/2
Vì Ot là tia phân giác của xOy' nên xOt = xOy'/2
Thay xOy'= x'Oy ta được:
xOt = x'Oy/2 = x'Oz
Vậy xOt=x'Oz
Bài 1:
a: góc xOy'=180-110=70 độ
góc zOy'=70/2=35 độ
góc yOt=góc x'Oy/2=70/2=35 độ
b: Vì góc yOt=góc y'Oz
nên góc y'Oz+góc y'Ot=180 độ
=>Oz và Ot là hai tia đối nhau
x x' y O y' t t'
Ta có: \(\widehat{xOy}=\widehat{x'Oy'}\)(đối đỉnh)
\(\Rightarrow\widehat{yOt}=\widehat{yOt'}\) (đối đỉnh)
Ta có: \(\widehat{xOy}+\widehat{xOy'}=\widehat{tOy'}+\widehat{tOy}=180^o\)
\(\Rightarrow\widehat{tOy}+\widehat{y'Ot'}=\widehat{tOt'}=180^o\)
Lại có: Hai góc đối nhau tao thành góc bẹt 180 độ.
Vậy: Ot và Ot' đối nhau (đpcm)
x x' y y' t t' O 1 2
ta có: xx' cắt yy' tại O
=> góc xOy = góc x'Oy' ( đối đỉnh)
=> góc xOy/2 = góc x'Oy'/2
mà góc O1 = góc xOy/2 ( định lí tia phân giác)
góc O2 = góc xOy/2 ( định lí tia phân giác)
=> góc O1 = góc O2
mà góc O1 = góc xOy/2 => góc O1. 2 = góc xOy
mà góc xOy + góc xOy' = 180 độ
=> góc O1 .2 + góc xOy' = 180 độ
góc O1 + góc O1 + góc xOy' = 180 độ
=> góc O1 + góc O2 + góc xOy' = 180 độ ( góc O1 = góc O2)
=> Ot' là tia đối của tia Ot ( định lí)
O x x' y y' t' t
Thấy ^xOy và ^x'Oy' đối đỉnh
=> ^xOy = ^x'Oy'
=> ^x'Oy' = 50o
^xOy và ^x'Oy kề bù
=> ^xOy + ^x'Oy = 180o
=> ^x'Oy = 130o
^x'Oy và xOy' đối đỉnh
=> ^x'Oy = ^xOy'
=> ^xOy' = 130o
Vì Ot là tia p/g xOt
=> xOt = tOy' = xOy'/2 = 65o
Tự tính góc x'ot' và t'Oy
Vì t'Oy và t'Oy' kề bù (oy và oy' đối nhau)
=> t'Oy + t'Oy' = 180o
=> t'Oy' = 115o
Vì x'Ot' < t'Oy' (65 < 115)
=> Ox' nằm giữa Ot' và Oy'
=> Ox là tia đối của Ox' sẽ nằm giữa Ot' và Ot
=> t'Ox + xOt = t'Ot
=> t'Ot = 180o
=> t'Ot là góc bẹt => Ot và Ot' đối nhau
Thông cảm cách làm dài dòng quá
a) Các cặp góc đối đỉnh là:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\); \(\widehat{x'Oy}\) và \(\widehat{y'Ox}\).
b) + Có tia Ot là tia phân giác của góc xOy
\(\Rightarrow\widehat{xOt}=\widehat{yOt}=\dfrac{\widehat{xOy}}{2}\)
+ Có tia Oz là tia phân giác của góc x'Oy'
\(\Rightarrow\widehat{x'Oz}=\widehat{y'Oz}=\dfrac{\widehat{x'Oy'}}{2}\)
+ Có hai góc xOy' và góc xOy là hai góc kề bù
\(\Rightarrow\widehat{xOy}'+\widehat{xOy}=180^o\)
+ Có hai góc xOy và góc x'Oy' là một cặp góc đối đỉnh
\(\Rightarrow\) \(\widehat{xOy}=\widehat{x'Oy'}\)
\(\Rightarrow\dfrac{\widehat{xOy}}{2}=\dfrac{\widehat{x'Oy'}}{2}\)
\(\Rightarrow\widehat{xOt}=\widehat{y'Oz}=\dfrac{\widehat{xOy}}{2}\)
\(\Rightarrow\widehat{xOt}+\widehat{xOy'}+\widehat{y'Oz}=2\cdot\dfrac{\widehat{xOy}}{2}+\widehat{xOy'}=\widehat{xOy}+\widehat{xOy'}=\widehat{zOt}=180^o\)
nên hai tia Ot và Oz là hai tia đối nhau.
Mong cái này giúp được bạn nhé. ☺
thanks