K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(M+N=3xyz-2x^2+5xy+5x^2+xyz-5y+3-2y=3x^2+4xyz+5xy-7y+3\)

\(N-M=5x^2+xyz-5y+3-2y-3xyz+2x^2-5xy=7x^2-2xyz-5xy-7y+3\)

2 tháng 2 2017

1, (x2-x+2)2-(x-2)2=(x2-x+2-x+2)(x2-x+2+x-2)=(x2-2x+4)x2

2,a.x3+4x2-29x+24=0

\(\Leftrightarrow\)x3-3x2+7x2-21x-8x+24=0

\(\Leftrightarrow\)(x3-3x2)+(7x2-21x)-(8x+24)=0

\(\Leftrightarrow\)x2(x-3)+7x(x-3)-8(x-3)=0

\(\Leftrightarrow\)(x-3)(x2-x+8x-8)=0

\(\Leftrightarrow\)(x-3)(x-1)(x+8)=0

\(\Leftrightarrow\)\(\left[\begin{matrix}x-3=0\\x-1=0\\x+8=0\end{matrix}\right.\)\(\left[\begin{matrix}x=3\\x=1\\x=-8\end{matrix}\right.\)

vậy pt có tập nghiệm là S=\(\left\{-8;1;3\right\}\)

b. đặt x2-x=y ta có:

y2-14y+24=0 \(\Leftrightarrow\)(y2-2.7y+49)-25=0 \(\Leftrightarrow\)(y-7)2-52=0 \(\Leftrightarrow\)(y-12)(y-2)=0 \(\Leftrightarrow\left[\begin{matrix}y=12\\y=2\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}x^2-x=12\\x^2-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2-x-12=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}\left(x+3\right)\left(x-4\right)=0\\\left(x-2\right)\left(x+1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-3\\x=4\\x=2\\x=-1\end{matrix}\right.\)

vậy pt có tập nghiệm là S=\(\left\{-3;-1;2;4\right\}\)

3 tháng 2 2017

3.ta có : 5x2+5y2+8xy+2x-2y+2=0

\(\Leftrightarrow\)(4x2+8xy+4y2)+(x2+2x+1)+(y2-2y+1)=0

\(\Leftrightarrow\)(2x+2y)2+(x+1)2+(y-1)2=0

lại có (2x+2y)2+(x+1)2+(y-1)2\(\ge\)0 dấu = chỉ sảy ra khi và chỉ khi \(\left\{\begin{matrix}\left(2x+2y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}2x+2y=0\\x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

vậy x=-1 và y=1

31 tháng 10 2017

Bài 1:

a)3x2 - 3y2 - 12x +12y=3(x2-y2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)

b) 4x3 + 4xy2 + 8x2y - 16x=4x(x-4)+4xy(y+2x)=4x(x-4+y2+2xy)

c) x4 - 5x2 + 4=x4-x2-4x2+4=x2(x2-1)-4(x2-1)=(x2-1)(x2-4)=(x-1)(x+1)(x-2)(x+2)

d) x3 - 2x2 + 6x - 5=x3-x2-(x2-6x+5)=x2(x-1)-(x-1)(x-5)=(x-1)(x2-x+5)

e) x2 - 4x +3=x2-x-3x+3=x(x-1)-3(x-1)=(x-1)(x-3)

f ) 2x2 + 3x - 5=2x2-2+3x-3=2(x2-1)+3(x-1)=2(x-1)(x+1)+3(x-1)=(x-1)(2x+1)

5 tháng 9 2018

Bài 1 :

a ) \(A=3x^2-5x+2000\)

\(A=3\left(x^2-\dfrac{5}{3}x+\dfrac{2000}{3}\right)\)

\(A=3\left[\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+\dfrac{23975}{36}\right]\)

\(A=3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\right]\)

Vì : \(\left(x-\dfrac{5}{6}\right)^2\ge0\Rightarrow\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\ge\dfrac{23975}{35}\Rightarrow3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\right]\ge\dfrac{23975}{12}\)

Vậy GTNN của A là \(\dfrac{23975}{12}\) khi \(\left(x-\dfrac{5}{6}\right)^2=0\Rightarrow x=\dfrac{5}{6}\)

b ) \(B=-2x^2+6x+2018\)

\(B=-2\left(x^2-3x-1009\right)\)

\(B=-2\left[\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{4045}{4}\right]\)

\(B=-2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{4045}{4}\right]\le\dfrac{4045}{2}\)

Vậy GTLN của B là \(\dfrac{4045}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

Chúc bạn học tốt !!

5 tháng 9 2018

2)

\(x^9-x^7+x^6-x^5-x^4+x^3-x^2+1\)

\(=x^7\left(x^2-1\right)+x^4\left(x^2-1\right)+x^3\left(x^2-1\right)-1\left(x^2-1\right)\)

\(=\left(x^7+x^4+x^3-1\right)\left(x-1\right)\left(x+1\right)\)

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-1\right)\left(x^2-9\right)+15\)

\(=\left(x^2-5+4\right)\left(x^2-5-4\right)+15\)

\(=\left(x^2-5\right)^2-16+15=\left(x^2-5\right)^2-1\)

\(=\left(x^2-5+1\right)\left(x^2-5-1\right)=\left(x^2-4\right)\left(x^2-6\right)=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

\(x^7+x^5+1\)

\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

2 tháng 10 2017

\(1,3x-24y=3\left(x-8y\right)\)

\(2,6x^3y^2-12x^2y^2-3x^2y=3x^2y\left(2xy-4y-1\right)\)

\(3,7x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(7x-8\right)\)

...(tương tự)

\(10,5x-5y+x^2-xy=5\left(x-y\right)+x\left(x-y\right)=\left(x-y\right)\left(x+5\right)\)

\(11,x^2+2xy+y^2-16=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.

Bài 2: 

a: \(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

b: \(=x^{10}-x+x^5-x^2+x^2+x+1\)

\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

5 tháng 9 2017

dễ mà tự suy nghĩ và dùng máy tính bấm là ra thôi

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Bài 1:

a)

$A=(3x-5)(2x+11)-(2x+3)(3x+7)$

$=6x^2+33x-10x-55-(6x^2+14x+9x+21)$

$=-76$

b)

$B=4x(3x-2)-3x(4x+1)=12x^2-8x-(12x^2-3x)=-5x$

c)

$C=(x+3)(x-3)-(x-1)^2=(x^2-9)-(x^2-2x+1)=2x-10$

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Bài 2:
a)

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b)

$x^3-5x^2+x-5=x^2(x-5)+(x-5)=(x^2+1)(x-5)$

c)

$x^2-2xy+y^2-9=(x-y)^2-3^2=(x-y-3)(x-y+3)$

23 tháng 10 2017

1)

\(x^3-x^2z+x^2y-xyz=\left(x^3+x^2y\right)-\left(x^2z+xyz\right)\\ =x^2\left(x+y\right)-xz\left(x+y\right)=\left(x+y\right)\left(x^2-xz\right)\\ =x\left(x+y\right)\left(x-z\right)\)

2)

\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\\ \: \Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\\ \Leftrightarrow16x=28\Leftrightarrow x=\dfrac{28}{16}=\dfrac{7}{4}\)

3)

gọi bốn số liên tiếp là:

x+1; x+2; x+3; x+4 với x là các số tự nhiên

theo đề bài, ta có:

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\\ =\left(x^2+5x+5\right)^2-1^2+1=\left(x^2+5x+5\right)^2\)

vậy tích của 4 số tự nhiên liên tiếp cộng với 1 là 1 số chính phương

4)

\(a+b=9\Rightarrow a^2+2ab+b^2=9^2=81\\ \Rightarrow a^2+b^2+40=81\\\Rightarrow a^2+b^2=41\\ \Rightarrow a^2+b^2-2ab=41-2.20=1\\ \Leftrightarrow\left(a-b\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)

vì a < b => a - b < 0

khi đó a - b= - 1

\(\Rightarrow\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)

26 tháng 10 2017

Nốt bài 5 đi bạn khocroi