Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OBC và tam giác ODA có
góc O chung
OA=OA(gt)
OB=OD(gt)
=> Tam giác OBC=ODA(c-g-c)
=> BC=AD(cạnh tương ứng)
Bài 2:
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC=BE và AC//BE
b: Xét tứ giác AIEK có
AI//KE
AI=KE
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay I,M,K thẳng hàng
Mk làm rùi nhưng dài lém, hiện giờ đt của mk đang đi sửa nên mk chỉ nói cách làm thui nhé.
a/ Theo giả thuyết ta có : xOy = xOz = 120 độ (1)
Lại có : xOy + xOz + yOz = 360 độ
<=> 120 độ + 120 độ + yOz = 360 độ
<=> yOz = 120 độ (2)
Từ (1) + (2) => xOy = xOz = yOz = 120 độ (đpcm)
b/ Gọi Ox'; Oy'; Oz' lần lượt là các tia đối của tia Ox; Oy; Oz
Ta có : xOy + yOx' = 180 độ (kề bù)
=> 120 độ + yOx' = 180 độ
=> yOx' = 60 độ
Ta thấy : yOx' = 1/2 góc yOz (60 = 1/2 . 120) (2)
Tia Ox' nằm giữa 2 tia Oy và Oz (4)
Từ (3) và (4) => Ox' là tia phân giác của góc yOz (5)
CM tương tự ta có :
- Tia Oy' là tia phân giác của góc xOz (6)
- Tia Oz' là tia phân giác của góc xOy (7)
Từ (5) + (6) + (7) => Tia đối của mỗi tia Ox; Oy; Oz là tia phân giác của góc hợp bởi 2 tia còn lại (đpcm)
câu a: do h thuộc đường phân giác góc xOy nên theo tính chất ta có HA = HB.(10
HA vuông góc với 0A,HB VUÔNG góc với OB,góc xOy=90 => HAOB là hcn=> góc AHB =90(2)
Từ (1) và (2)=>HAB là tam giác vuông cân tại H
b,
do OA=OC, OB=OC=> AB=CD
mặt khác, xét 2 tam giác BCO và tam giác ADO
BC=AD (từ câu a)
BO=DO
CO=AO
=`> tg OBC=ODA (c.c.c) => góc OBC= góc ODA (hai góc tương ứng
xét hai tam IBA và ICD
AB=CD
góc IBA=IDC
góc BIA=DIC(hai góc đối dỉnh)
=> tg IBA=IDC(g.c.g) => IB=ID, IC=IA (các cạp cạnh tương ứng)
c,
ta đã có tg OBC= tg ODA => góc BCO = góc DAO
xét hai tg AIO và CIO
OA=OC (gt)
IA=IC
góc BCO = góc DAO
=> tg AIO= tg CIO (c.g.c) => góc IOC = góc IOA (hai góc tương ứng ) => Oi là tia phân giác của AOC hay góc xOy
a) xét tg OCB và tg OAD có:
OC = OA
OB = OD
góc DOB chung => tg OCB = tg OAD
=> CB = AD