Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái đề nó...
Thôi, làm đúng hay sai thì bạn thông cảm nha ( trình độ kém ) :D
a) \(\Delta AOH-\Delta HBO\)có :
\(OA=OB\left(gt\right)\)
\(\widehat{AOH}=\widehat{HBO}\left(gt\right)\)
\(OH:\)cạnh chung
\(\Rightarrow\Delta OAH=\Delta OBH\)(c.g.c)
\(\Rightarrow AH=HB\)( cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của AB
b) Hiz, không chắc chắn lắm
Vì \(\Delta AOC-\Delta OCB\) có :
\(OA=OB\left(gt\right)\)
\(\widehat{OAC}=\widehat{OCB}\left(gt\right)\)
\(OH:\)cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ACO}=\widehat{BCO}\)( cạnh tương ứng )
Ta có Hình vẽ
x O y t 1 2 A B H 1 2
a) xét \(\Delta OAH\&\Delta OBH\)có
\(\widehat{H1}=\widehat{H2}\left(=90^o\right)\)
OH chung
\(\widehat{O1}=\widehat{O2}\)
\(\Rightarrow\Delta OAH=\Delta OBH\)
=> OA=OB ( 2 cạnh tương ứng )
A B C H O x y t 1 2
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
ΔAOC và ΔBOC có:
OA = OB (cmt)
∠ AOC = ∠ BOC (vì Ot là tia phân giác góc xOy)
OC cạnh chung
⇒ ΔAOC = ΔBOC (c.g.c)
⇒ CA = CB (hai cạnh tương ứng)
∠ OAC = ∠ OBC ( hai góc tương ứng).
Ta có hình vẽ:
Xét tam giác AOH và tam giác BOH có
\(\widehat{AOH}\)=\(\widehat{BOH}\) (GT)
\(\widehat{AHO}\)=\(\widehat{BHO}\) (GT)
OH: cạnh chung
Vậy \(\Delta\)AOH = \(\Delta\)BOH (g.c.g)
a) ∆AOH và ∆BOH có:ˆAOHAOH^=ˆBOHBOH^(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
ˆOACOAC^=ˆOABOAB^(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
ˆOACOAC^= ˆOBCOBC^( góc tương ứng).
Xem thêm tại: http://loigiaihay.com/bai-35-trang-123-sach-giao-khoa-toan-7-tap-1-c42a5064.html#ixzz48jIcx
a) Xét ΔAOH∆AOH và ΔBOH∆BOH có:
+) ˆAOH=ˆBOHAOH^=BOH^ (vì OtOt là phân giác)
+) OHOH là cạnh chung
+) ˆAHO=ˆBHO(=900)AHO^=BHO^(=900)
Suy ra ΔAOH=ΔBOH∆AOH=∆BOH ( g.c.g)
Suy ra OA=OBOA=OB (hai cạnh tương ứng).
b) Xét ΔAOC∆AOC và ΔBOC∆BOC có:
+) OA=OBOA=OB (cmt)
+) ˆAOC=ˆBOCAOC^=BOC^ (gt)
+) OCOC cạnh chung.
Suy ra ΔAOC=ΔBOC∆AOC=∆BOC (c.g.c)
Suy ra: CA=CBCA=CB ( hai cạnh tương ứng)
ˆOAC=ˆOBCOAC^=OBC^ ( hai góc tương ứng).
a) ∆AOH và ∆BOH có:=(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
=(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
= ( góc tương ứng).