Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét t/g vg AOCvà t/g vg BOD
có:AO=BO(gt)
go1cA là góc chung
->t/g AOC=t/g BOD(c.góc vg -góc nhon kề)
b)
Xét t/g vg ACB và t/g vg BDA
có:BD=AC(t/g AOC=t/gBOD)
AB là cạnh chung
->t/g ACB=t/g BDA(c.huyền -c.góc vg)
->góc CAB=góc DBA(2 góc tương ứng)
->t/g AIB cân tại I(t/c của t/g cân)
c)
kẻ dường thẳng OI
Xét t/g vg DOI và t/g vg COI
có:OD=OC(t/g ODB=t/g OCA)
OI là cạnh chung
->t/g DOI=t/g COI(c.huyền -cạnh góc vg)
->DI=IC(2 cạnh tương ứng)
d)(ko pt lm)SORRY
a, Xét \(\Delta AOC\)và \(\Delta BOD\) có:
\(\widehat{OAC=\widehat{OBD}}=90\)
Chung\(\widehat{AOB}\)
OA=OB
=> \(\Delta OAC=\Delta OBD\left(g-c-g\right)\)
b,\(\widehat{OAB}+\widehat{IAB}=90\)
\(\widehat{OBA}+\widehat{IBA}=90\)
Mà \(\widehat{OAB}=\widehat{OBA}\left(\Delta OABc\text{â}n\right)\)
=> \(\widehat{IAB}=\widehat{IBA}\)
=> \(\Delta IAB\) cân tại I
c,\(\Delta IBC\) vuông tại B=> IB<IC
Mà IA=IB => IA<IC
d,\(\widehat{IAB}=\widehat{AOI}\)(cùng phụ \(\widehat{OAB}\))
Mà\(\widehat{AOI}=\frac{1}{2}\widehat{AOB}\)
=> \(\widehat{IAB}=\frac{1}{2}\widehat{AOB}\)
a)Xét tam giác AOC và tam giác BOD(đều là vuông)
OI là cạnh chung
OA=OB(gt)
\(\Rightarrow\) tam giác AOC= tam giác BOD(cạnh huyền cạnh góc vuông)
b)Vì tam giác AOC= tam giác BOD(cạnh huyền cạnh góc vuông)
\(\Rightarrow\)IA=IB(cặp cạnh tương ứng)
Mà IC<IB(cạnh góc vuông nhỏ hon cạnh huyền)
Do đó IC<IA
c)Vì IA=IB(CMT)
\(\Rightarrow\)tam giác AIB cân tại A
d)(mk ko hiểu bạn ghi gì cả)
Bạn tự vẽ hình nha
OA = OB (tam giác AOC = tam giác BOD)
=> Tam giác OAB cân tại O
=>\(OBA=\frac{180-BOA}{2}=\frac{180}{2}-\frac{BOA}{2}=90-\frac{BOA}{2}\) (1)
Tam giác CAB vuông tại C có:
CAB + CBA = 90
=> CAB = 90 - CBA (2)
Thay (1) vào (2), ta có:
CAB = 90 - [90 - BOA/2] = 90 - 90 + BOA/2 = BOA/2
Hình chắc bác tự vẽ đc tui vẽ nó chả cân j cả
a) +) Xét Δ AOC vuông tại C và Δ BOD vuông tại D có
OA = OB ( gt)
\(\widehat{xOy}\) : góc chung
⇒ Δ AOC= Δ BOD ( ch-gn)
b) Từ từ_____ để nghĩ
Hehe:)) Nghĩ 1 lúc cx ra câu b r này
b)
+) Xét Δ AOB có
OA = OB ( gt)
⇒ Δ AOB cân tại O
⇒ \(\widehat{OAB}=\widehat{OBA}\) tính chất tam giác cân ) (1)
+) Theo câu a ta có Δ AOC= Δ BOD
⇒ \(\widehat{OAC}=\widehat{OBD}\) ( 2 góc tương ứng) (2)
+) Ta có \(\hept{\begin{cases}\widehat{OAC}+\widehat{CAB}=\widehat{OAB}\\\widehat{OBD}+\widehat{DBA}=\widehat{OBA}\end{cases}}\) (3) ______________________________ Chỗ này mk k bt gt
Từ (1) ; (2) và (3) \(\Rightarrow\widehat{CAB}=\widehat{DBA}\)
hay \(\widehat{IAB}=\widehat{IBA}\)
+) Xét Δ AIB có
\(\widehat{IAB}=\widehat{IBA}\) ( cmt)
=> Δ AIB cân tại I
@@ Học tốt
Chiyuki Fujito ~~~
a: Xét ΔOCA vuông tại C và ΔODB vuông tại D có
OA=OB
góc O chung
=>ΔOCA=ΔODB
b: Xét ΔBDA vuông tại D và ΔACB vuông tại C có
BD=AC
BA chung
=>ΔBDA=ΔACB
=>góc IAB=góc IBA
=>ΔIAB cân tại I
c: IA=IB
IB>IC
=>IA>IC
còn 1 câu nữa là so sánh IC và IA