K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

ô thật là khó

4 tháng 3 2020

Thôi ko cần nữa ,mik nghĩ ra r

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMRa) tam giác OAM = tam giác OBMb)AM = BM; OM \(\perp\)ABc) OM là đg trung trực của ABd) Trên tia Ot lấy điểm N. CMR: NA = NB2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMRa) AB // KE             b) góc ABC = góc KEC; BC...
Đọc tiếp

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMR

a) tam giác OAM = tam giác OBM

b)AM = BM; OM \(\perp\)AB

c) OM là đg trung trực của AB

d) Trên tia Ot lấy điểm N. CMR: NA = NB

2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMR

a) AB // KE             b) góc ABC = góc KEC; BC = CE

3.Cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A, C. Trên tia Oy lấy 2 điểm B,D sao cho OA = OB, AC = BD

a)CMR: AD = BC

b) Gọi E là giao điểm AD và BC. CMR tam giác EAC = tam giác EBD

c) CMR: OE là phân giác của góc xOy, OE \(\perp\)CD

4.Cho tam giác ABC có góc B = 90, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA

a) Tính góc BCE                                             b) CMR BE//AC

1
29 tháng 12 2018

câu 1

a) xét tam giác OAM và tam giác OBM có:

OB=OA(gt)

góc BOM= góc MOA(Ot là tia phân giác của góc xOy)

OM:cạnh chung

tam giác OAM= tam giác OBM(c.g.c)

b)vì tam giác OAM= tam giác OBM(câu a)

AM=BM(2 cạnh tương ứng)

góc OMB= góc OMA(2 góc tương ứng)

Mà hóc OMB+góc OMA=180o(kề bù)

góc OMB=góc OMA=180o:2=90o

OM vuông góc với AB

c)vì MA=MB(câu b)

Mà OM vuông góc với AB(câu b)

OM là đường trung trực của AB

d)xét tam giác NBM và tam giác NAM có

AM=BM(câu b)

góc BMN= góc AMN(=90o)

MN:cạnh chung

tam giác NBM= tam giác NAM(c.g.c)

NA=NB(2 cạnh tướng ứng)

6 tháng 9 2016

 a,Chứng minh tam giác MPE đồng dạng với tam giác KPQ. 
+PK là phân giác góc QPO. 
=>^MPE = ^KPQ.(α) . 
+ Tam giác OMN đều .=>^EMP=120 độ. 
+ QK cũng là phân giác ^OQP. 
=>^QKP = 180 - (^KQP+^KPQ). 
Mà 2^KQP + 2^KPQ =180- 60 =120 độ. 
=>^QKP=120 độ. Do đó:^EMP = ^QKP. (ß) . 
Từ (α) và (ß), ta có tam giác MPE đồng dạng với tam giác KPQ. 
b, Chứng minh tứ giác PQEF nội tiếp được trong đường tròn. 
Do hai tam giác MPE và KPQ đồng dạng nên:^MEP=^KQP , hay: ^FEP=^FQP. 
Suy ra, tứ giác PQEF nội tiếp được trong đường tròn. 
c, Gọi D là trung điểm của đoạn PQ. Chứng minh tam giác DEF là một tam giác đều. 
Do hai tam giác MPE và KPQ đồng dạng nên: PM/PK =PE/PQ . Suy ra: PM/PE =PK/PQ . 
Ngoài ra: ^MPK=^EPQ . Do đó, hai tam giác MPK và EPQ đồng dạng. 
Từ đó:^PEQ=^PMK=90độ . 
Suy ra, D là tâm của đường tròn ngoại tiếp tứ giác PQEF. 
Vì vậy, tam giác DEF cân tại D. 
Ta có: ^FDP=2^FQD=^OQP ; ^EDQ=2^EPD=^OPQ . 
^FDE=180 - (^FDP+^EDQ) =^POQ =60độ. 
Từ đó, tam giác DEF là tam giác đều.