Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAOM và ΔBOM có
OA=OB
OM chung
AM=BM
Do đó: ΔOAM=ΔOBM
2: Xét ΔMNA và ΔMOB có
MN=MO
\(\widehat{NMA}=\widehat{OMB}\)(hai góc đối đỉnh)
MA=MB
Do đó: ΔMNA=ΔMOB
3: Ta có: ΔMNA=ΔMOB
=>NA=OB
Ta có: ΔMNA=ΔMOB
=>\(\widehat{MNA}=\widehat{MOB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//OB
Ta có: OB=AN
\(OK=KB=\dfrac{OB}{2}\)(K là trung điểm của OB)
\(AH=HN=\dfrac{AN}{2}\)(H là trung điểm của AN)
Do đó: OK=KB=AH=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH là hình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng
mãi mới có 1 bài toán lớp 7
hình :
O x y A B I M
xét \(\Delta OAI\)và \(\Delta OBI\)
OA = OB ( gt)
IA=IB ( I là trung điểm của AB)
OI - cạnh chung
=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)
vì \(\Delta OAI\)=\(\Delta OBI\)
=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)
OI nằm giữa 2 tia Ox và Oy
=> OI là pg của \(\widehat{xOy}\)
câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm
a) xét tg OAH & tg OBH có :
OH chung
OA = OB ( gt )
góc AOH = góc BOH ( Ot p/g góc xOy )
suy ra tg OAH = tg OBH (c. g .c )
b) do tgOAH = tg OBH ( cmt )
suy ra góc OAH= góc OBH ( 2góc tg ứng )
Xét tg ONB & tg OAM có :
góc OAH= góc OBH ( cmt )
OA = OB ( gt )
góc O chung
suy ra tg ONB = tg OAM ( g . c .g )
c) có : OA = OB suy ra O thuộc trung trực AB (1)
tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )
suy ra H thuộc trung trực OH (2)
từ (1) & (2) suy ra OH trung trực của AB
suy ra OH vuông góc AB
d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN )
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
x O y z A B M
a) xét \(\Delta AOM\)và \(\Delta BOM\)có
\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung
=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)
=> AM = BM (hai cạnh tương ứng )
=> M là trung điểm của AB
b) vì AO = BO
=> \(\Delta ABO\)là tam giác cân
vì OM là phân giác của AB
=> OM vừa là đường cao của tam giác ABC
=> \(OM\perp AB\left(đpcm\right)\)
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
b: Xét ΔMAN và ΔMBO có
MA=MB
\(\widehat{AMN}=\widehat{BMO}\)(hai góc đối đỉnh)
MN=MO
Do đó: ΔMAN=ΔMBO
=>\(\widehat{MAN}=\widehat{MBO}\)
c: Sửa đề:chứng minh K,M,H thẳng hàng
Ta có: \(\widehat{MAN}=\widehat{MBO}\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AN
Ta có: ΔMBO=ΔMAN
=>BO=AN(1)
Ta có: K là trung điểm của OB
=>\(OK=KB=\dfrac{OB}{2}\left(2\right)\)
Ta có:H là trung điểm của AN
=>\(HA=HN=\dfrac{AN}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra OK=KB=HA=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH làhình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng
giải theo cách giải của lớp 7, dùng tam giác giúp em ạ