K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

                                             O A B C D E

a) Ta có : \(\widehat{AOC}+\widehat{COB}=180^o\)( kề bù )

                  \(135^o+\widehat{COB}=180^o\)

                                   \(\widehat{COB}=180^o-135^o\)

                                   \(\widehat{COB}=45^o\)

Ta có : \(\widehat{BOC}+\widehat{COD}=\widehat{BOD}\)

                \(45^o+\widehat{COD}=135^o\)

                              \(\widehat{COD}=135^o-45^o\)

                              \(\widehat{COD}=90^o\)

Ta có : \(\widehat{DOC}+\widehat{COE}=180^o\)( kề bù )

                 \(90^o+\widehat{COE}=180^o\)

                               \(\widehat{COE}=90^o\)

\(\Rightarrow OC\perp OE\)

b) Ta có : \(\widehat{COB}+\widehat{BOE}=\widehat{COE}\)

                    \(45^o+\widehat{BOE}=90^o\)

                                  \(\widehat{BOE}=90^o-45^o\)

                                  \(\widehat{BOE}=45^o\)

\(\Rightarrow\widehat{BOE}=\widehat{COB}=\frac{\widehat{COE}}{2}\)

Vậy OB là tia phân giác của \(\widehat{COE}\)

16 tháng 9 2020

                                                           Bài giải

A O B C D E

 Ta có : \(\widehat{AOC}=\widehat{BOD}\left(=135^o\right)\)

 \(\widehat{DOC}\) chung và OC và OD cùng nằm trên cùng một nửa mặt phẳng nên \(\widehat{DOA}=\widehat{COB}\)

Mà \(\widehat{DOA}=\widehat{EOB}\) ( hai góc đối đỉnh ) nên \(\widehat{BOC}=\widehat{BOE}\)

\(\Rightarrow\text{ }OB\text{ là tia phân giác }\widehat{COE}\)

Ta có : \(\widehat{BOE}\) và \(\widehat{BOD}\) kề bù nên \(\widehat{BOE}+\widehat{BOD}=180^o\)

                                                       \(\Rightarrow\text{ }\widehat{BOE}+135^o=180^o\text{ }\Rightarrow\text{ }\widehat{BOE}=45^o\)

  Ta lại có : \(\widehat{COD}+\widehat{COE}=180^o\)

\(\widehat{COD}+90^o=180^o\)

\(\widehat{COD}=90^o\)

\(\text{ }\Rightarrow\text{ }OC\perp OE\)

24 tháng 7 2019

a) Ta có: \(\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)

=> \(60^0+\widehat{BOC}=90^0\)

=> \(\widehat{BOC}=90^0-60^0\)

=> \(\widehat{BOC}=30^0\) (1)

Lại có: \(\widehat{BOC}+\widehat{COD}=\widehat{BOD.}\)

=> \(30^0+\widehat{COD}=60^0\)

=> \(\widehat{COD}=60^0-30^0\)

=> \(\widehat{COD}=30^0\) (2)

Từ (1) và (2) => \(\widehat{BOC}=\widehat{COD}\left(=30^0\right).\)

=> OC là tia phân giác của \(\widehat{BOD}.\)

Ta có: \(\widehat{COD}+\widehat{AOD}=\widehat{AOC.}\)

=> \(30^0+\widehat{AOD}=60^0\)

=> \(\widehat{AOD}=60^0-30^0\)

=> \(\widehat{AOD}=30^0\).

\(\widehat{COD}=\widehat{AOD}\left(=30^0\right)\)

=> OD là tia phân giác của \(\widehat{AOC}.\)

b) Vì OB là tia phân giác của \(\widehat{DOE}\)

=> \(\widehat{BOD}=\widehat{BOE}\left(=60^0\right).\)

Ta có: \(\widehat{BOC}+\widehat{BOE}=\widehat{COE}\)

=> \(30^0+60^0=\widehat{COE}\)

=> \(\widehat{COE}=90^0.\)

=> \(OC\perp OE\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 7 2019

cam on ban nhieu nhieu nhieu nha

11 tháng 8 2023

Các anh chị giúp em với ạ

góc AOC+góc BOC=180 độ

=>góc BOC=180-150=30 độ

góc AOD+góc BOD=180 độ

=>góc AOD=180-150=30 độ

góc AOD=góc BOE(hai góc đối đỉnh)

góc AOD=góc BOC(=30 độ)

=>góc BOC=góc BOE

=>OB là phân giác của góc COE

20 tháng 7 2018

Hai góc AOCBOC kề bù nên  A O C ^ + B O C ^ = 180 °

⇒ B O C ^ = 180 ° − 150 ° = 30 ° .

Tương tự, ta tính được A O D ^ = 30 ° .

Ta có B O E ^ = A O D ^ = 30 °  (hai góc đối đỉnh).

Suy ra B O C ^ = B O E ^ = 30 ° . (1)

Tia OB nằm giữa hai tia OCOE. (2)

Từ (1) và (2) ta được tia OB là tia phân giác của góc COE

Đếm góc, đếm tia

24 tháng 9 2016
Ta có : aOc+cOb=180( 2góc kề bù) =>cOb=180-160=20 Lại có: bOd+dOa=180( 2 góc kề bù) =>dOa=180-160=20 Vù Oe là tia đối của Od, Oa là tia đối của Ob nên dOa đối đỉnh với eOb => bOc=bOe=20 =>Ob là tia phân giác của cOe