Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 1
=> f(1) = \(\left(1^2+1+2\right)^{20}\)= \(a_0.1^{40}+a_1.1^{39}+a_2.1^{38}+...+a_{39}.1+a_{40}\)
= \(a_0+a_1+a_2+...+a_{39}+a_{40}\)= S
=> S = \(\left(1^2+1+2\right)^{20}\)
=> S = \(4^{20}\)
a) gọi Q(x) là thương khi chia f(x) cho g(x)
khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x) (1)
Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:
f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0
<=> \(-15+a=0\)
<=>a=15
Vậy vs a=15 thì f(x) chia hết cho g(x)
2x^3 - 3x^2 + x + a x + 2 2x^3 - 3x^2 2x^2 - 7x + 15 2x^2 + 4x^2 -7x^2 + x -7x^2 - 14x 15x + a 15x + 30
Để \(2x^3-3x^2+x+a⋮\left(x+2\right)\) thì:
\(15x+a=15x+30\)
\(\Leftrightarrow a=30\)
2 | 3 | 1 | a | |
a=-2 | 2 | -7 | 15 | 0 |
vì phép chia trên là phép chia hết nên số dư cuối cùng bằng 0. Để dư bằng 0 thì a=30
(áp dụng lược đồ horner)
F(1)=a+a+a+a+a=5a
F(-1)=a-a+a-a+a=a
vi F(1)=F(-1) ne 5a=a => a=0