Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = ax\(^2\)+bx + 2019
=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)
<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)
<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)
Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:
(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)
=> \(f\left(1-\sqrt{2}\right)=2020\)
Theo bài ra ta có:
\(\hept{\begin{cases}a+b+c\inℚ\left(1\right)\\16a+4b+c\inℚ\left(2\right)\\81a+9b+c\inℚ\left(3\right)\end{cases}}\)
Từ (2) => 80a+20b+5c\(\inℚ\)kết hợp với (3) => a-11b-4c\(\inℚ\left(4\right)\)
Từ (2) có: 48a+12c+3c\(\inℚ\left(5\right)\)
Từ (4)(5) => 49a+b-c \(\inℚ\)kết hợp với (1) => 50a+2b\(\inℚ\)=> 25a+b\(\inℚ\left(6\right)\)
Từ (6)(1) => 24a-c\(\inℚ\)kết hợp với (2) => 40a+4b \(\inℚ\)=> 10a+b \(\inℚ\)kết hợp với (6) => 15a\(\inℚ\)
=> a\(\inℚ\)kết hợp với (6) => b\(\inℚ\)
Ta có đpcm
Lời giải:
\(f(1+\sqrt{2})=a(1+\sqrt{2})^2+b(1+\sqrt{2})+2018=2019\)
\(\Leftrightarrow a(3+2\sqrt{2})+b(1+\sqrt{2})=1\)
\(\Leftrightarrow (3a+b)+\sqrt{2}(2a+b)=1\)
\(\Leftrightarrow \sqrt{2}(2a+b)=1-3a-b(*)\)
Vì $a,b\in\mathbb{Q}$ nên $1-3a-b\in\mathbb{Q}$ và $2a+b\in\mathbb{Q}$
Mà $\sqrt{2}\not\in\mathbb{Q}$ (kết quả quen thuộc) nên để $(*)$ xảy ra thì \(\left\{\begin{matrix} 2a+b=0\\ 1-3a-b=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-2\end{matrix}\right.\)
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
Ta có \(\Delta=b^2-4ac=\left(a+c\right)^2-4ac=\left(a-c\right)^2\)
\(\Rightarrow x_1=\frac{-b+a-c}{2a};x_2=\frac{-b-a+c}{2a}\in Q.\)
Chỉ xác định được a; b với điều kiện a;b là số hữu tỉ, còn a; b là số thực thì có vô số giá trị thỏa mãn
Nếu a;b hữu tỉ:
\(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2018=2019\)
\(\Leftrightarrow\left(3+2\sqrt{2}\right)a+\left(1+\sqrt{2}\right)b=1\)
\(\Leftrightarrow3a+2\sqrt{2}a+b+b\sqrt{2}=1\)
\(\Leftrightarrow\left(2a+b\right)\sqrt{2}=1-3a-b\)
Do a; b hữu tỉ \(\Rightarrow\left(2a+b\right)\sqrt{2}\) vô tỉ; \(1-3a-b\) hữu tỉ
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}2a+b=0\\1-3a-b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)