K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)

\(\Rightarrow f\left(3\right)=a.3^2+b.3+c=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=0\Rightarrow f\left(-2\right)=-f\left(3\right)\)

Xét \(f\left(-2\right).f\left(3\right)=\left[-f\left(3\right)\right].f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\)

10 tháng 4 2024

mình không hiểu, sao f(2).f(3)=[f(3)].f(3)=[f(3)]2?

 
9 tháng 7 2019

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)

Ta có: \(f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)=13a+b+2c=0\)

Suy ra f(-2) và f(3) là hai số đối nhau.

Vậy \(f\left(-2\right).f\left(3\right)\le0\)(Tích hai số đối nhau bé hơn hoặc bằng 0)

(Dấu '="\(\Leftrightarrow f\left(-2\right)=f\left(3\right)=0\))

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Lời giải:

Ta có:

\(f(-2)=4a-2b+c\)

\(f(3)=9a+3b+c\)

\(\Rightarrow f(-2)+f(3)=13a+b+2c=0\) (theo giả thiết)

\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)(f(3)=-f^2(3)\leq 0\)

Do đó ta có đpcm.

18 tháng 12 2017

Ta có f(-2).f(3)=(4a-2b+c).(9a+3b+c)

=(4a-2b+c).(13a+b+2c-(4a-2b+c)

Mà 13a+b+2c=0\(\Rightarrow\)f(-2).f(3)=\(-\left[\left\{4a-2b+c\right\}^2\right]\)

Có (4a-2b+c)^2 luôn luôn \(\le\)0

Nên f(-2).f(3)\(\le\)0

30 tháng 1 2018

Ta có \(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)

\(=36a^2-6b^2+c^2-6ab+13ac+bc\)

Thay b = - 13a - 2c, ta có

 \(36a^2-6\left(-13a-2c\right)^2+c^2-6a\left(-13a-2c\right)+13ac+\left(-13a-2c\right)c\)

\(=-900a^2-300ac-25c^2=-25\left(36a^2+12ac+c^2\right)\)

\(-25\left(6a+c\right)^2\le0\forall a;c\)

Vậy nên \(f\left(-2\right).f\left(3\right)\le0\)

DM
31 tháng 1 2018

Cách này đơn giản hơn:  Có   \(f\left(-2\right)=4a-2b+c;f\left(3\right)=9a+3b+c\) 

Do đó   \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\) (theo giả thiết). Từ đó \(f\left(-2\right)=-f\left(3\right)\) nên 

                                      \(f\left(-2\right)f\left(3\right)=-f^2\left(3\right)\le0\)

9 tháng 3 2017

ta có : f(-2)=4a-2b+c ; f(3)=9a+3b+c

f(-2)+f(3)=13a+b+2c=0\(\Rightarrow\)f(-2) và f(3) là hai số đối nhau hoặc cùng bằng 0\(\Rightarrow\)f(-2).f(3)=<0

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Bài 1:

\(f(x)=ax^2+bx+c\Rightarrow \left\{\begin{matrix} f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\\ f(3)=a.3^2+b.3+c=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)\)

\(=13a+b+2c=0\)

\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)f(3)=-f(3)^2\leq 0\) do \(f(3)^2\geq 0\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Bài 2:

Thay $x=-3$ ta có:

\(f(-3)=a.(-3)+5=-2\)

\(\Rightarrow a=\frac{7}{3}\)

Vậy $a=\frac{7}{3}$

25 tháng 4 2016

thay f-2 và f3 vào rồi pạn sẽ tìm ra