K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

a) Xét (O;R) có:

\(\widehat{BCD}\)là góc nt chắn cung BC

\(\widehat{BAC}\)là góc nt chắn cung BC

\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)

Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)

Xét \(\Delta ACM\)và \(\Delta DBM\):

\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)

\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)

\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)

b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)

Xét \(\left(O;R\right):\)

\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)

\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)

\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)

Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)

Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)

Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)

Xét tg ABCE có:

\(AB//CE\)

\(\widehat{MAC}=\widehat{ABE}\)

\(\Rightarrow Tg\)ABCE là hthang cân

c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:

\(AM^2=AC^2-CM^2\)(1)

\(MB^2=BC^2-CM^2\)(2)

\(MC^2=BC^2-BM^2\)(3)

\(MD^2=BD^2-BM^2\)(4)

\(DE^2=BD^2+BE^2\)(5)

Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:

\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)

                                                              \(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)

                                                               \(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))

                                                                \(=AC^2+BD^2\)

                                                                  \(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)

                                                                  \(=DE^2\)(c/m (5))

Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)

Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)

cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối địnhb. MA^2+MB^2+MC^2+MD^2=4R^2c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là...
Đọc tiếp

cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:

A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định

b. MA^2+MB^2+MC^2+MD^2=4R^2

c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau

2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD

a,CM: Sahkb=Sacb+Sadb

b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ

3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat

5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ

7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.

nhờ các bạn ssieeu toán giải hộ mình với! thanks  nhiều

0
20 tháng 9 2016

A B C D M E O

Gọi E là điểm đối xứng với C qua tâm O của đường tròn

Dễ dàng chứng minh được ABED là hình thang cân.

=> BD = AE

Ta có : \(MA^2+MB^2+MC^2+MD^2=\left(MA^2+MC^2\right)+\left(MB^2+MD^2\right)=AC^2+BD^2\)

\(=AC^2+AE^2=CE^2=\left(2R\right)^2=4R^2\) KHÔNG ĐỔI.

9 tháng 7 2019

Làm sao để chứng minh cái dễ dàng mà bạn nói vậy :v

14 tháng 2 2020

\(MA.MB=MC.MD\Leftrightarrow\Delta MAC\approx\Delta MDB\left(G-G\right)\)

Duong thang OM cat duong tron tai E,F 

chung minh tuong tu ta co \(MA.MB=ME.MF=\left(R-d\right)\left(R+d\right)=R^2-d^2\)

14 tháng 2 2020

Upin & Ipin bn có thể giải chi tiết ra hộ mk đc ko ?

4 tháng 2 2019

O A C B D I M N E F P H

a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC

=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)

Tương tự: AD2 + BC2 = 4R2 => ĐPCM.

b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2 

Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF

= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2 

c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.

C/m tương tự, ta có: IM vuông góc CD => ĐPCM.

d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN

Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).

e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.

4 tháng 2 2019

Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(

2 tháng 8 2023

 Hạ \(OH\perp AB\)\(OK\perp CD\). Dễ thấy tứ giác OHMK là hình chữ nhật \(\Rightarrow HK=OM\)

 Lại có \(AB^2=4HB^2=4\left(OB^2-OH^2\right)=4R^2-4OH^2\) (1)

 và \(CD^2=4CK^2=4\left(OC^2-OK^2\right)=4R^2-4OK^2\) (2)

Từ (1) và (2), suy ra \(AB^2+CD^2=8R^2-4\left(OH^2+OK^2\right)\) \(=8R^2-4HK^2=8R^2-4OM^2\) không đổi, đpcm.

23 tháng 6 2017

Đường kính và dây của đường tròn

30 tháng 3 2018

a)

Từ M kẻ tiếp tuyến Mx của (O) nên OA vuông góc với Mx

Ta có tứ giác MEHF là tứ giác nội tiếp => góc MFE=góc MHE(1)

Mà góc MHE=góc MAH(2) (+góc HMA=90o)

Từ (1) và (2) => góc MAB = góc MFE

Mặt khác góc MAB=góc BMx (=1/2 số đo cung MB )

=>EF song song với Mx

Om vuông góc Mx => OM vuông góc  È 

mà MD vuông góc È => o thuộc MD => dpcm

17 tháng 4 2018

làm câu b đi bạn