K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

F(x,y)=x^2+y^2+4x-6y+5

F(3;2)=9+14-12-12+5=-6<0

=>A nằm trong (C)

Dây cung MN ngắn nhất

=>IH lớn nhất

=>H trùng với A

=>MN có VTPT là (1;-1)

Phương trình MN là:

1(x-3)-1(y-2)=0

=>x-y-1=0

14 tháng 4 2018

Đáp án C

+ Ta có nhận xét sau:  đường tròn đã cho có tâm I( -2; 3) và R = 7

Mà:

Suy ra A nằm ở trong (C) .

+ Gọi đường thẳng d cắt (C) theo dây cung MN.

Dây cung MN  ngắn nhất khi và chỉ khi IH lớn nhất ( trong đó H là hình chiếu của I trên d)

 có vectơ pháp tuyến là 

Vậy d có phương trình: 5( x-3) -1( y-2) =0  hay 5x – y -13= 0

19 tháng 11 2018

Đáp án D

Trong các dây của đường tròn; dây lớn nhất là đường kính. Nên để d cắt (C) theo 1 dây cung dài nhất thì d phải đi qua tâm I ( -2; 3) của đường tròn.

Vậy d  qua I và A(3;2)  nên có VTCP  và có VTPT 

=> phương trình d: 1( x- 3) + 5( y- 2) = 0 hay x+ 5y – 13= 0

Do đó d: x+ 5y -13= 0 .

(C): x^2+y^2-4x+6y-12=0

=>O(2;-3)

R=căn 2^2+(-3)^2+12=5

Gọi đường cần tìm là (d'): x+y+c=0

Gọi A,B lần lượt là giao điểm của (d') và (C)

ΔOHB vuông tại H

\(d\left(O;AB\right)=\dfrac{\left|2+\left(-3\right)+c\right|}{\sqrt{2}}=HO\)

\(=\sqrt{OB^2-BH^2}=3\)

=>\(\left[{}\begin{matrix}c=3\sqrt{2}+1\\c=-3\sqrt{2}+1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+y-3\sqrt{2}+1=0\\x+y+3\sqrt{2}+1=0\end{matrix}\right.\)

29 tháng 6 2020

(C) có tâm I(2;3), điểm A(3;2)

+Dây cung có độ dài lớn nhất trong đường tròn là đường kính

=> d qua tâm I(2;3) và A(3;2)

=> d nhận vecto nIA (1;1) là vtpt

=> d: x+y-5=0

NV
14 tháng 4 2022

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

11 tháng 4 2019

Đáp án B

Đường tròn (C) có tâm I( 1; -3) và R= 2

 có phương trình  4x- 3y+ m= 0.

Vẽ

Vậy: