Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AIC=góc AHC=90 độ
=>AIHC nội tiếp
b: Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE
a, Ta co 2 bo de quen thuoc sau : FC la phan giac ^EFD, FB la phan giac PFD
ma QR//EP nen
\(\widehat{PFB}=\widehat{FQD}=\widehat{QFD}\Rightarrow\Delta DFQ\) can tai D => DF=DQ (1)
mat khac theo tinh chat tia phan giac ngoai ^PFD co \(\frac{FD}{FP}=\frac{CD}{CP}\)
ma \(\frac{CD}{CP}=\frac{DT}{PF}\) (DT//PF)
suy ra \(\frac{DF}{PF}=\frac{DT}{PF}\Rightarrow DT=DF\) (2)
Tu(1)va (2) suy ra DT=DQ hay D la trung diem QT
b, Goi S la trung diem BC ta chung minh PQSR noi tiep
Co \(\Delta PSE~\Delta ESD\left(G-G\right)\Rightarrow\frac{PS}{ES}=\frac{ES}{SD}\Leftrightarrow ES^2=PS.DS\)
lai co ES=SB=SC do S la trung diem canh huyen BC cua tam giac vuong BEC
suy ra \(BS^2=PS.SD=DS\left(PD+DS\right)=SD^2+PD.DS\)
=> \(PD.DS=BS^2-SD^2=\left(BS-DS\right)\left(BS+DS\right)=BD.DC\) (3)
Mat khac ^DQB=^PFB(cmt)
^PFB=^RCD( BFEC nt)
suy ra ^DQB=^RCD=> BQCR noi tiep
=> \(BD.DC=DQ.DR\) (4)
Tu (3),(4) suy ra DP.DS=DQ.DR => PQDR noi tiep
=> (PQR) di qua S la trung diem BC co dinh
c,lay H' doi xung voi H qua BC, ta co H' thuoc (O) .
ta lai co bo de sau : \(BD.DC=DH.DA\) (quen thuoc)
suy ra \(DP.DS=DH.DA\left(=DB.DC\right)\)
<=> \(\frac{DH}{DP}=\frac{DS}{DA}\)
ma ^HDP=^SDA=90
suy ra \(\Delta DHP~\Delta DSA\left(c-g-c\right)\Rightarrow\widehat{DHP}=\widehat{DSA}\)
va \(\widehat{DSA}=\widehat{AHK}\left(phu\widehat{DAS}\right)\)
=>\(\widehat{DHP}=\widehat{AHK}\) => P,H,K thang hang
lai co \(\widehat{AFH}=\widehat{AKH}=\widehat{AEH}=90\)
=> A,F,H,K,E cung thuoc 1 duong tron =. FHKE noi tiep
=>\(PF.PE=PH.PK\) (5)
ma BFEC noi tiep => \(PF.PE=PB.PC\) (6)
(5)+(6)Suy ra \(PH.PK=PB.PC\) => BHKC noi tiep
Vi H' ,I doi xung voi H,K qua BC ma BHKC noi tiep => BH'IC noi tiep
do vay \(I\in\left(BH'C\right)=\left(ABH'C\right)=\left(O\right)\)
e,Goi tam (CJL) la U, (U) cat (O) tai V, BC giao OG tai X
=> \(\widehat{VBG}=\widehat{VJG}\left(=\widehat{VCB}\right)\) =>BJVG noi tiep
=> B,J,X,V,G cung thuoc 1 duong tron => ^BVG=^BXG=90
lai co ^XVG +^XBG=180 hay ^XVG+^BAC=180
va ^BVC+^BAC=180
suy ra ^XVG=^BVC
hay 90 +^XVB=^XVB+^XVC
=> ^XVC=90
=> V thuoc duong tron dk XC
mat khac V cung thuoc (O)
suy ra V co dinh ,C co dinh
suy ra tam U di chuyen tren trung truc VC co dinh (dpcm)