K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Tích cho mk sau mk nói cho biết

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.tìm vị trí của M để AC+BD nhỏ nhấtAM song song với ODgọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhậtAB tiếp xúc với đường tròn đường kính CDIN là đường trung bình tam giác MABgọi I' là...
Đọc tiếp

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.

  1. tìm vị trí của M để AC+BD nhỏ nhất
  2. AM song song với OD
  3. gọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhật
  4. AB tiếp xúc với đường tròn đường kính CD
  5. IN là đường trung bình tam giác MAB
  6. gọi I' là giao điểm của OM với Ax. CMR: I'C.OD = I'O.CO
  7. Tam giác AMB là tam giác vuông
  8. tam giác IAO đồng dạng với tam giác NOB
  9. Gọi R là bán kính của (O), r là bán kính đường tròn nội tiếp tam giác COD.CMR: 2<R/r<3
  10. Gọi K là giao điểm của AD với BC. MK cắt AB tại H. CMR: MH vuông góc với AB
  11. Tìm vị trí của M để tam giác MHO lớn nhất
  12. kéo dài CO cắt DB tại Q. CMR: tam giác DCQ cân tại D
  13. Gọi D', E', F' là giao điểm của CD với AB, BM với Ax, D'E' với By. CMR: A, M, F' thẳng hàng
  14. 2MH2 = MA.MB
  15. CB,AD,IN,MH đồng quy
  16. gọi L là giao điểm của EA và DO. CMR: DEL là tam giác cân
0
10 tháng 8 2017

1.Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

10 tháng 8 2017

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm