K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có: ∠(ABN ) = 90 0 (B thuộc đường tròn đường kính AN)

⇒ BN // MO ( cùng vuông góc với AB)

Do đó:

∠(AOM) = ∠(ANB) (đồng vị))

∠(AOM) = ∠(BOM) (OM là phân giác ∠(AOB))

⇒ ∠(ANB) = ∠(BOM)

Xét ΔBHN và ΔMBO có:

∠(BHN) = ∠(MBO ) = 90 0

∠(ANB) = ∠(BOM)

⇒ ΔBHN ∼ ΔMBO (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Hay MB. BN = BH. MO

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO⊥AB

mà ΔOAB cân tại O

nên K là trung điểm của AB

28 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Ta có:

MA = MB ( tính chất 2 tiếp tuyến cắt nhau)

OA = OB ( cùng bằng bán kính đường tròn (O)

⇒ OM là đường trung trực của AB

OM ∩ AB = K ⇒ K là trung điểm của AB

8 tháng 9 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Tam giác MAO vuông tại A, AK là đường cao có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

16 tháng 6 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có:

K là trung điểm của CE (E đối xứng với C qua AB)

K là trung điểm của AB

AB ⊥ CE (MO ⊥ AB)

⇒ Tứ giác AEBC là hình thoi

⇒ BE // AC

Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)

Nên BE ⊥ AD và DK ⊥ AB

Vậy E là trực tâm của tam giác ADB

16 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại trung điểm H của AB

b: Xét (O) có

\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP

\(\widehat{AQP}\) là góc nội tiếp chắn cung AP

Do đó: \(\widehat{MAP}=\widehat{AQP}\)

=>\(\widehat{MAP}=\widehat{MQA}\)

Xét ΔMAP và ΔMQA có

\(\widehat{MAP}=\widehat{MQA}\)

\(\widehat{AMP}\) chung

Do đó: ΔMAP đồng dạng với ΔMQA

=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)

Xét (O) có

ΔQAP nội tiếp

QP là đường kính

Do đó: ΔQAP vuông tại A

Xét ΔHAP vuông tại H và ΔHQA vuông tại H có

\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)

Do đó: ΔHAP đồng dạng với ΔHQA

=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)

=>\(MA\cdot HQ=MQ\cdot HA\)

25 tháng 1 2023

Đề là đường kính AD hay sao nhỉ?

25 tháng 1 2023

Mình làm tắt nha bạn không hiểu đâu thì hỏi lại nhé

a) MA, MB là tiếp tuyến

=> \(\widehat{OBM}=\widehat{OAM}=90^o\) (t/c tiếp tuyến)

=> \(\widehat{OBM}+\widehat{OAM}=180^o\)

mà 2 góc đối nhau

=> tứ giác AOBM nội tiếp

=> 4 điểm A, O, B, M cùng thuộc 1 đường tròn

b) Áp dụng hệ thức lượng vào tam giác OAM vuông tại A đường cao AH

=> \(AM^2=MH.MO\)

Áp dụng hệ thức lượng vào tam giác DAM vuông tại A đường cao AC

=> \(AM^2=MC.MD\)

=> \(AM^2=MH.MO=MC.MD\)