K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

https://www.youtube.com/channel/UCU_DXbWfhapaSkAR7XsK5yQ?view_as=subscriber

5 tháng 2 2020

Gọi OD cắt (O) tại E,F \(\left(E\in DF\right)\)ta có:

     \(\widehat{DAE}=\widehat{DFM}\)(cùng bù với \(\widehat{MAE}\))

     \(\widehat{ADE}=\widehat{FDM}\)(chung)

Do đó \(\Delta DAE\text{~}\Delta DFM\text{ }\left(g.g\right)\)

\(\Rightarrow\frac{DA}{DF}=\frac{DE}{DM}\)

\(\Rightarrow DA.DM=DE.DF\)

\(=\left(DO-OE\right)\left(DO+OF\right)=\left(DO-OM\right)\left(DO+OM\right)=DO^2-OM^2\)(đpcm)

4 tháng 10 2016

A B C O M E F D

a, Theo tính chất 2 tiếp tuyến cắt nhau ta sẽ chứng minh được AM vuông góc với OC, MD vuông góc BD.
    Mà  \(\widehat{AMB}=90^o\)(góc nội tiếp chắn nửa đường tròn )
    Vậy tứ giác OEMF là hình chữ nhật suy ra \(\widehat{COD}=90^O.\)
    Trong tam giác vuông OCD, ta áp dụng hệ thức lượng suy ra: \(OM^2=CM.MD\Leftrightarrow R^2=CM.MD\).
   Théo tính chât của tiếp tuyến bằng nhau ta có: CM = AC; MD = BD.
    Vậy \(AC.BD=R^2.\)
b, Đặt CM = a. R; MD = b.R. Do \(R^2=MC.MD\Rightarrow a.b=1.\)
Áp dụng hệ thức lượng trong tam giác vuông : \(OC^2=CM.CD\Leftrightarrow OC^2=a.R.\left(a.R+b.R\right)\Leftrightarrow OC=R.\sqrt{a\left(a+b\right)}\)
Tương tự \(OD=R.\sqrt{b\left(a+b\right)}.\)
Vậy chu vi tam giác OCD bằng :
  \(a.R+b.R+R.\sqrt{a\left(a+b\right)}+R.\sqrt{b\left(a+b\right)}\)
\(=R\left(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\right)\)ậy
Suy ra chu vi tam giác OCD  min khi : \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\)min.
Có: \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a}+\sqrt{b}\right)\)
                                                                                \(=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)\)
Do a.b = 1 nên a + b min khi a = b = 1 ( áp dụng BĐT cô - si). 
Vây MIN \(\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)=\sqrt{2}\left(\sqrt{2}+2\right)=2.\left(\sqrt{2}+1\right)\)
Vậy chu vi tam giác OCD min khi M là trung điểm của CD hay M là trung điểm của cung AB>
\(P_{min}\Delta OCD=2\left(\sqrt{2}+1\right).R\)
    
   

 

15 tháng 10 2016

qua dễ, lân sau nho hoi nhung bai toan hoc bua ban nhe.

1 tháng 10 2016

A x B y M C D

a/ Vì DC, Ax, By là các tiếp của tiếp của đường tròn và cắt nhau tại các điểm tương ứng trên hình vẽ nên ta có 

\(\hept{\begin{cases}AC=CM\\BD=MD\end{cases}}\)  . Dễ dàng chứng minh góc COD = 90 độ

Áp dụng hệ thức về cạnh trong tam giác vuông , ta có \(MC.MD=OM^2\) hay \(AC.BD=R^2\)

b/ Ta có \(C_{OCD}=OC+OD+CD\) . Để chu vi tam giác OCD nhỏ nhất thì CD nhỏ nhất

Mà CM.MD = R2 không đổi nên CM+MD = CD đạt giá trị nhỏ nhất khi CM = MD

Khi đó M là điểm nằm giữa cung AB trên mặt phẳng chứa C và D.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.