K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

a) Xét \(\Delta CDA\) và \(\Delta CBD\) có:

\(\left\{{}\begin{matrix}\widehat{ACD}-\text{góc chung}\\\widehat{CDA}=\widehat{CBD}\left(=\dfrac{1}{2}\stackrel\frown{AD}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta CDA\sim\Delta CBD\left(g.g\right)\)

\(\Rightarrow\dfrac{CD}{CA}=\dfrac{CB}{CD}\Rightarrow CD^2=CA.CB\).

b) Ta dễ dàng chứng minh được \(\widehat{ODC}=\widehat{OIC}=90^o\), do đó tứ giác CDOI nội tiếp đường tròn đường kính OC.

c) Theo tính chất đối xứng, ta có E, K đối xứng với nhau qua OI.

Do tứ giác CDOI nội tiếp nên \(\widehat{DIO}=\widehat{DCO}\)

Ta biến đổi góc: \(\widehat{COE}=\widehat{IOC}-\widehat{EOI}=\widehat{IOC}-\widehat{KOI}=\widehat{IOC}-\widehat{DIO}+\widehat{OKD}=\widehat{IOC}-\widehat{DIO}+\widehat{ODI}=\widehat{IOD}-\widehat{DOC}-\widehat{DIO}+\widehat{ODI}=180^o-\widehat{DIO}-\widehat{ODI}-\widehat{DOC}-\widehat{DIO}+\widehat{ODI}=180^o-2\widehat{DIO}-\widehat{DOC}=180^o-2\widehat{DCO}-90^o+\widehat{DCO}=90^o-\widehat{DCO}=\widehat{COD}\).

Từ đó \(\Delta DOC=\Delta EOC\left(c.g.c\right)\) nên CE cũng là tiếp tuyến của (O).

d) Do G là trọng tâm của tam giác ABD nên G nằm trên DI và \(DG=\dfrac{2}{3}DI\).

Dựng O' trên cạnh OI sao cho \(OO'=\dfrac{2}{3}OI\).

Theo định lý Thales đảo ta có O'G // OD.

Từ đó \(O'G=\dfrac{1}{3}OD=\dfrac{1}{3}R\) không đổi.

Mà I, O cố định nên O' cố định, từ đó G luôn di chuyển trên đường tròn \(\left(O';\dfrac{1}{3}R\right)\) cố định.

(Đây là một ứng dụng của phép vị tự)

 

19 tháng 2 2018

xin hãy giúp mình ạ

28 tháng 5 2019

Mình không vẽ hình được mong bạn thông cảm 

a, Vì tứ giác MANB nội tiếp

=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)

Vậy IN.IM=IA^2

b,

VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'

=>PAB=AMP

MÀ AMP=ABN (tứ giác AMBN nội tiếp)

=>PAB=ABN

MÀ I là trung điểm của AB

=> I là trung điểm của NP

=> tứ giác ANBP là hình bình hành

Vậy tứ giác ANBP là hình bình hành

c,Vì tứ giác ANBP là hình bình hành

nên \(AN//BP\)

=>NAB=ABP

Lại có NAB=NMB( tứ giác AMBN nội tiếp)

=>ABP=NMB

=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP

Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP

d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))

=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và  KGH=APB

MÀ I,A,B cố định 

=> H,K cố định

Ta có APB=KGH

Mà APB =ANB( tứ giác ANBP là hbh)

=> KGH=ANB 

MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =

=> ANB không đổi => KGH không đổi 

MÀ K,H cố định

=> G thuộc cung tròn cố định

Vậy khi M di chuyển thì G thuộc cung tròn cố định

24 tháng 3 2021

CẢM ƠN BẠN 

26 tháng 5 2017

BAC là tam giác nhọn, DOC là vuông, bằng nhau = cách nào?

26 tháng 5 2017

bạn cố gắng là bạn làm được