K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

Mình giúp bạn câu c, thôi nha

c,

AM + AN

= AM + AM + MN

= 2AM + 2MI (MN = 2MI)

= 2AI

\(\left\{{}\begin{matrix}\widehat{B_1}=\widehat{O_1}\left(=90^0-\widehat{B_2}\right)\\\widehat{O_1}=\widehat{AIB}\text{(tứ giác ABOI nội tiếp)}\end{matrix}\right.\)

\(\widehat{B_1}=\widehat{AIB}\)

\(\widehat{A_1}\) chung

⇒ ΔABK ∞ ΔAIB

⇒ AB2 = AK . AI

Chứng minh được : AB2 = AM . AN

⇒ AK . AI = AM . AN

\(\frac{AK}{AM}+\frac{AK}{AN}=\frac{AK.AM+AK.AN}{AM.AN}\)

\(=\frac{AK\left(AM+AN\right)}{AM.AN}\)

= \(\frac{AK.2AI}{AM.AN}\)

=\(\frac{2AM.AN}{AM.AN}\)

= 2

sao ko làm phần a và b

Lười

14 tháng 2 2020

A B C D E K I O H

14 tháng 2 2020

Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )

xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)

=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)

ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)

do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)

=> A,B,O,H,C thuoc duong tron duong kinh AO

=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)

ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau

=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)

=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)

=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)

Tu (1),(2),(3) ta co dpcm

30 tháng 5 2021

Tạm câu c) làm sau :<