Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
Xét tứ giác AION có
góc AIO+góc ANO=180 độ
=>AION là tứ giác nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC
a: góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
b: Gọi giao của DC và OA là H
=>BC vuông góc OA tại H
Xét ΔOHD vuông tại H và ΔOIA vuông tại I có
góc HOD chung
=>ΔOHD đồng dạng với ΔOIA
=>OH*OA=OI*OD
=>OI*OD=R^2
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
a) Xét tứ giác OMAN có
\(\widehat{OMA}\) và \(\widehat{ONA}\) là hai góc đối
\(\widehat{OMA}+\widehat{ONA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OMAN là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,M,A,N cùng thuộc một đường tròn(đpcm)
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
Xét tứ giác AION có
góc OIA+góc ONA=180 độ
=>AION là tứ giác nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC