K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)

23 tháng 9 2021

k có câu d ạ

 

15 tháng 12 2016

Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)

a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)

Còn lại tương tự.

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)

Để N là điểm cố định thỏa mãn thì

\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.

Vậy không có điểm cố định.

21 tháng 10 2021

b: Để (d)//(d') thì m+3=4

hay m=1

20 tháng 11 2023

a: Thay x=7 và y=2 vào (d), ta được:

7(m+1)+m-1=2

=>7m+7+m-1=2

=>8m+6=2

=>8m=-4

=>\(m=-\dfrac{1}{2}\)

b: Thay x=2 vào y=3x-4, ta được:

\(y=3\cdot2-4=2\)

Thay x=2 và y=2 vào (d), ta được:

2(m+1)+m-1=2

=>2m+2+m-1=2

=>3m+1=2

=>3m=1

=>\(m=\dfrac{1}{3}\)

c: Tọa độ giao điểm của hai đường d1 và d2 là:

\(\left\{{}\begin{matrix}2x-1=x-8\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-x=-8+1\\y=2x-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-7\\y=2\left(-7\right)-1=-15\end{matrix}\right.\)

Thay x=-7 và y=-15 vào d, ta được:

\(-7\left(m+1\right)+m-1=-15\)

=>-7m-7+m-1+15=0

=>-6m+7=0

=>-6m=-7

=>\(m=\dfrac{7}{6}\)

27 tháng 12 2018

\(\text{1) Ta có: }\sqrt{x}-1< \sqrt{x}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< 1\\ \)

2) a) Để \(d\left|\right|d_1\) thì \(\Rightarrow\left\{{}\begin{matrix}a=a_1\\b\ne b_1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m-1\ne1\end{matrix}\right.\)

\(\Rightarrow m=3\)

\(\text{b) Ta có: }y=mx+m-1\\ \Rightarrow mx+m-1-y=0\\ \Rightarrow m\left(x+1\right)-\left(1+y\right)=0\)

Tọa độ điểm cố định đó là :

\(\left\{{}\begin{matrix}x+1=0\\1+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)

Vậy \(\forall m\) đường thẳng \(\left(d\right)\) luôn đi qua 1 điểm có tọa độ \(X\left(-1;-1\right)\)