Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi ∆ là đường thẳng song song với d thỏa ,mãn đầu bài
Do ∆ song song với đường thẳng d nên đường thẳng ∆ có dạng:
∆: x- 2y+ c= 0
Theo giả thiết: d d ; ∆ = 5 n ê n c - 2 = 5
Suy ra:c= 7 hoặc c= -3
Vậy có 2 đường thẳng thỏa mãn là : x- 2y+ 7 =0 và x- 2y – 3= 0
Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0
Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.
Lấy điểm M( -2 ; -1) thuộc d.
Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0
Chọn B
Đáp án: C
Gọi d’ là đường thẳng song song với d và cách d một khoảng bằng 10
Vì d’//d nên d’ có dạng: 3x - y + c = 0, (c ≠ 1)
Lấy M(0;1) ∈ d. Vì d’ cách d một khoảng bằng 10 nên:
Vậy d': 3x - y + 11 = 0 hoặc d': 3x - y - 9 = 0
\(1/\)
\(M\left(3;5\right);d:x+y+1=0\)
\(\)Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|x_M+y_M+1\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3+5+1\right|}{\sqrt{1^2+1^2}}=\dfrac{9\sqrt{2}}{2}\)
\(M\left(2;3\right);d:\left\{{}\begin{matrix}x-2t\\y=2+3t\end{matrix}\right.\)
d qua \(M\left(2;3\right)\) có \(VTCP\overrightarrow{u}=\left(-2;3\right)\Rightarrow VTPT\overrightarrow{n}=\left(3;2\right)\)
\(PTTQ\) của \(\Delta:3\left(x-2\right)+2\left(y-3\right)=0\)
\(\Rightarrow3x-6+2y-6=0\)
\(\Rightarrow3x+2y-12=0\)
Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|3.x_M+2.y_M-12\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3.2+2.3-12\right|}{\sqrt{3^2+2^2}}=0\)
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
Đáp án D
Do ∆ song song vớo ( d) nên có phương trình dạng: x- 2y+ c= 0
Mà ∆ đi qua A( 2; -3) nên ta có
2- 2. (-3) + c= 0
Do đó: c= - 8.
Vậy đường thẳng cần tìm là x- 2y – 8 = 0
d' song song d nên có dạng: \(x-2y+c=0\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
\(\Rightarrow d\left(A;d'\right)=\sqrt{5}\)
\(\Leftrightarrow\frac{\left|0.1-2.1+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\)
\(\Leftrightarrow\left|c-2\right|=5\Rightarrow\left[{}\begin{matrix}c=7\\c=-3\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-2y+7=0\\x-3y-3=0\end{matrix}\right.\)