K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

+) Gọi là giao điểm của đường thẳng với trục tung

Suy ra tọa độ của là: \(A\left( {0;y} \right)\)

Thay \(x = 0\) vào phương trình \(\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) ta có: \(\left\{ \begin{array}{l}0 = 2 - t\\y = 5 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 2\\y = 11\end{array} \right.\)

Vậy giao điểm của với trục tung là \(A\left( {0;11} \right)\)

+) Gọi là giao điểm của đường thẳng với trục hoành

Suy ra tọa độ của là: \(B\left( {x;0} \right)\)

Thay \(y = 0\) vào phương trình \(\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) ta có: \(\left\{ \begin{array}{l}x = 2 - t\\0 = 5 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{11}}{3}\\t =  - \frac{5}{3}\end{array} \right.\)

Vậy giao điểm của với trục hoành là \(B\left( {\frac{{11}}{3};0} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Xét phương trình tham số của d: \(\left\{ \begin{array}{l}x =  - 1 - 3t\left( 1 \right)\\y = 2 + 2t\left( 2 \right)\end{array} \right.\).

 Lấy \(\left( 1 \right) + \frac{3}{2}.\left( 2 \right) \Rightarrow x + \frac{3}{2}y = 2 \Rightarrow 2x + 3y - 4 = 0\)

Vậy phương trình tổng quát của đường thẳng d là: \(2x + 3y - 4 = 0\)

b) Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \frac{4}{3}\\x = 0\end{array} \right.\) . Vậy giao điểm của d với trục Oy là: \(A\left( {0;\frac{4}{3}} \right)\)

Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = 2\end{array} \right.\) . Vậy giao điểm của d với trục Ox là: \(B\left( {2;0} \right)\)

c) Thay tọa độ điểm \(M\left( { - 7;{\rm{ }}5} \right)\)vào phương trình đường thẳng d ta có: \(2.\left( { - 7} \right) + 3.5 - 4 \ne 0\)

Vậy \(M\left( { - 7;{\rm{ }}5} \right)\)không thuộc đường thẳng d.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Chọn \(t = 0;t = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {1; - 2} \right),B\left( { - 1; - 1} \right)\)

b) +) Thay tọa độ điểm C vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\ - 1 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên C không thuộc đường thẳng \(\Delta \)

+) Thay tọa độ điểm D vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\3 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên D không thuộc đường thẳng \(\Delta \)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: \(\overrightarrow {{u_1}}  = \left( {1; - 2} \right) \Rightarrow \overrightarrow {{n_1}}  = \left( {2;1} \right)\) và \(\overrightarrow {{u_2}}  = \left( {1;3} \right) \Rightarrow \overrightarrow {{n_2}}  = \left( {3; - 1} \right)\).

Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {2.3 + 1.( - 1)} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{3^2} + {{( - 1)}^2}} }} = \frac{{\sqrt 2 }}{2} \\ \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn B.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)

Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên  phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).

b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)

Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên  phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)

b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)

c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:

\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Điểm \(M\left( {1;2} \right)\) thuộc cả hai đường thẳng nói trên.

b) Ta có: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y =  - 3\\3x - y = 1\end{array} \right.\).

Sử dụng máy tính cầm tay, ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

c) Tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) chính là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: 

\(\left\{ {\begin{array}{*{20}{l}}
{x = 5 + 3t}\\
{y = - 5 - 4t}
\end{array}} \right. \Rightarrow 4x + 3y = 4(5 + 3t) + 3( - 5 - 4t) = 5\)

Phương trình tổng quát của \(\Delta \) là \(4x + 3y - 5 = 0\)

Khoảng cách từ M đến đường thẳng \(\Delta \) là \(d\left( {M,\Delta } \right) = \frac{{\left| {4.1 + 3.2 - 5} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 1\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn A