Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(P\left(x\right)=\left(-5x^3+2x^3+3x^3\right)+x^4+3x^2+\left(x-x\right)-4+7\)
\(=x^4+3x^2+3\)
\(Q\left(x\right)=-x^4+\left(5x^3+5x^3\right)+\left(-x^2-x^2\right)+\left(3x+x\right)-1\)
\(=-x^4+10x^3-2x^2+4x-1\)
Câu 2:
a: \(M=\left(3x^2y^3-3x^2y^3\right)+\left(2x^2y\right)+\left(3xy^2-5xy^2\right)+4\)
\(=2x^2y-2xy^2+4\)
Khi x=-1 và y=2 thì \(M=2\cdot\left(-1\right)^2\cdot2-2\cdot\left(-1\right)\cdot2^2+4\)
\(=4+2\cdot4+4=16\)
b: \(M+N=3xy^2+2x+3\)
\(M-N=4x^2y-7xy^2-2x+5\)
Bài 2:
a) Ta có: \(M=A\cdot B\)
\(=-2x^2z^3\cdot\frac{-5}{16}x^4y^3z^2\)
\(=\frac{5}{8}x^6y^3z^5\)
Hệ số của M là \(\frac{5}{6}\)
Phần biến của M là \(x^6;y^3;z^5\)
Bậc của M là 14
b) Thay x=1; y=-1 và z=1 vào biểu thức \(M=\frac{5}{8}x^6y^3z^5\), ta được:
\(\frac{5}{8}\cdot1^6\cdot\left(-1\right)^3\cdot1^5\)
\(=\frac{-5}{8}\)
Vậy: \(-\frac{5}{8}\) là giá trị của biểu thức \(M=\frac{5}{8}x^6y^3z^5\) tại x=1; y=-1 và z=1
Bài 4:
Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)
Vì \(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.
Lại có:
\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)
\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)
\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)
\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)
Vậy \(MAX_B=3,5\) khi \(x=y=0\)
5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)
Mà x nguyên tố \(\Rightarrow x=2\)
Thay x=2 vào ta có
51.2+26y=2000
\(\Rightarrow102+26y=2000\)
\(\Rightarrow26y=1898\)
\(\Rightarrow y=73\)
Vậy \(x=2,y=73\)
a) \(\dfrac{-2}{3}.x^3.y^2.z.\left(3.x^2.y.z\right)^2\)
\(=\dfrac{-2}{3}.x^3.y^2.z.3^2.x^4.y^2.z^2\)
\(=\left(\dfrac{-2}{3}.3^2\right).\left(x^3.x^4\right).\left(y^2.y^2\right).z.z^2\)
\(=-6.x^7.y^4.z^3\)
Hệ số: -6; Bậc: 14
b) Thay x=1; y=-1; z=2 vào đơn thức đã đc rút gọn ở câu a) ta đc:
\(-6.\left(1^7\right).\left(-1^4\right).\left(2^3\right)\)
\(=-6.1.1.8\)
\(=-48\)
Vậy giá trị của đơn thức tại x=1; y=-1; z=2 là -48.
a) Ta có: \(\dfrac{-2}{3}x^3y^2z\left(3x^2yz\right)^2\)
\(=\left(\dfrac{-2}{3}.9\right)x^7y^4z^3\)
\(=-6x^7y^4z^3\)
\(\Rightarrow Bậc\) \(của\) \(-6x^7y^4z^3\) \(là:14.\)
\(Hệ\) \(số\) \(là:-6.\)
b) Tại \(x=1;y=-1;z=2\) thì:
\(-6.1^7.\left(-1\right)^4.2^3\)
\(=-48\)
Vậy giá trị của đơn thức là: \(-48.\)
a) M\(=\dfrac{1}{2}x^9y^5\)
Phần biến là \(x^9y^5\), bậc của đơn thức M là 14
b) M=\(-16\)
Để 10\(x^my^5\) đồng dạng
Thì m=9;n=5