Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆AME = ∆CMB (c-g-c) Þ ÐEAM = ÐBCM
Mà BCM +MBC = 900 => EAM + MBC = 900
=> AHB = 900
Vậy AE vuôn góc BC
b)Gọi O là giao điểm của AC và BD.
∆AHC vuông tại H có HO là đường trung tuyến
=> HO = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)DM
=>∆DHM vuông tại H
=>DHM = 900
Chứng minh tương tự ta có: MHF = 900
Suy ra: DHM + MHF = 1800
Vậy ba điểm D, H, F thẳng hàng.
Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~
C,Gọi G là giao điểm của AC và BE
=> \(AG\perp BE\) (C là trực tâm tam giác ABE)
Lại có Góc GAB= Góc GBA = 45 độ
=> tam giác ABG vuông cân
Mà A,B cố định
=> G cố định
CMTT câu b => D;F;G thẳng hàng
=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB
a) xét tam giác BAD ta có:
M là trung điểm AB (gt)
F là trung điểm BD (gt)
vậy MF là đường trung bình tam giác BAD
=>MF//AD và MF=1/2 AD (1)
xét tam giác ADC ta có:
P là trung điểm CD (gt)
E là trung điểm AC (gt)
vậy PE là đường trung bình tam giác ADC
=>PE//AD và PE=1/2 AD (2)
từ (1) và (2) => PE//MF và PE=MF=1/2 AD
tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC
ta có:
ME=PF=1/2 BC (cmt)
MF=PE=1/2 AD (cmt)
AD=BC (gt)
vậy ME=PF=MF=PE
=>MEPF là hình thoi
b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K
xét tam giác ABD ta có:
Q là trung điểm AD (gt)
M là trung điểm AB (gt)
vậy MQ là đường trung bình tam giác ABD
=> MQ//BD và MQ=1/2 BD (1)
xét tam giác CBD ta có:
P là trung điểm CD (gt)
N là trung điểm BC (gt)
vậy PN là đường trung bình tam giác CBD
=> PN//BD và PN=1/2 BD (2)
từ (1) và (2)=> PN//MQ và PN=MQ
=>MQPN là hình bình hành
mà QN và MP là hai đường chéo và K là giao điểm
=>K là trung điểm của QN và MP (3)
xét hình thoi MEPF ta có:
MP và EF là hai đường chéo
K là trung điểm MP (cmt)
=> K là trung điểm EF (4)
từ (3) và (4)=> QN,MP,EF đồng quy tại K.
5:
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: Xét ΔAEB vuông tại E và ΔDAB vuông tại A có
góc ABE chung
=>ΔAEB đồng dạng với ΔDAB
c: ΔABD vuông tại A có AE là đường cao
nên BE*BD=BA^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>BE*BD=BH*BC
d: BE*BD=BH*BC
=>BE/BC=BH/BD
=>ΔBEH đồng dạng với ΔBCD
=>góc BHE=góc BDC
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ