K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

C,D ở đâu vậy??

25 tháng 6 2016

Thì bn vẽ hình ra chứ mk chưa vẽ hình

19 tháng 10 2018

a) ∆AME = ∆CMB (c-g-c) Þ ÐEAM = ÐBCM

Mà BCM +MBC = 90 => EAM + MBC = 900

=> AHB = 900

Vậy AE vuôn góc  BC

b)Gọi O là giao điểm của AC và BD.

∆AHC vuông tại H có HO là đường trung tuyến

=>  HO = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)DM

=>∆DHM vuông tại H

=>DHM = 900

Chứng minh tương tự ta có: MHF = 900

Suy ra: DHM + MHF = 1800

Vậy ba điểm D, H, F thẳng hàng.

đợi minkf tí

minhf không vẽ hình nha

25 tháng 8 2019

8F50boi.png

XtcxEFd.png

Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~

25 tháng 8 2019

C,Gọi G là giao điểm của AC và BE

=> \(AG\perp BE\) (C là trực tâm tam giác ABE)

Lại có Góc GAB= Góc GBA = 45 độ

=> tam giác ABG vuông cân 

Mà A,B  cố định

=> G cố định

CMTT câu b  => D;F;G thẳng hàng

=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB

21 tháng 11 2017

a) xét tam giác BAD ta có:

M là trung điểm AB (gt)

F là trung điểm BD (gt)

vậy MF là đường trung bình tam giác BAD

=>MF//AD và MF=1/2 AD (1)

xét tam giác ADC ta có:

P là trung điểm CD (gt)

E là trung điểm AC (gt)

vậy PE là đường trung bình tam giác ADC

=>PE//AD và PE=1/2 AD (2)

từ (1) và (2) => PE//MF và PE=MF=1/2 AD

tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC

ta có:

ME=PF=1/2 BC (cmt)

MF=PE=1/2 AD (cmt)

AD=BC (gt)

vậy ME=PF=MF=PE 

=>MEPF là hình thoi

b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K

xét tam giác ABD ta có:

Q là trung điểm AD (gt)

M là trung điểm AB (gt)

vậy MQ là đường trung bình tam giác ABD

=> MQ//BD và MQ=1/2 BD (1)

xét tam giác CBD ta có:

P là trung điểm CD (gt)

N là trung điểm BC (gt)

vậy PN là đường trung bình tam giác CBD

=> PN//BD và PN=1/2 BD (2)

từ (1) và (2)=> PN//MQ và PN=MQ

=>MQPN là hình bình hành

mà QN và MP là hai đường chéo và K là giao điểm

=>K là trung điểm của QN và MP (3)

xét hình thoi MEPF ta có:

MP và EF là hai đường chéo

K là trung điểm MP (cmt)

=> K là trung điểm EF (4)

từ (3) và (4)=> QN,MP,EF đồng quy tại K.

21 tháng 11 2017

bài này khá đơn giản nên bạn tự vẽ hình nha !

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.a)  Chứng minh rằng:DAMC đồng dạng với DBMD.b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.ACc)  Vẽ MH...
Đọc tiếp

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.

a)  Chứng minh rằng:DAMC đồng dạng với DBMD.

b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.AC

c)  Vẽ MH vuông góc với CD tại H. Chứng minh:HM2 = HC.HD

d)  Gọi I là giao điểm của BC và AD. Chứng minh: DE.IA = ID.EC

Câu 2. Cho DABC có ba góc nhọn, AB < AC , đường cao AH và trung tuyến AD. Kẻ DE, DF lần lượt vuông góc với AB, AC tại E, F. Chứng minh:

a)   DABH DDBE

b)    AC.DF = AH.DC

c)   DE AC

DF     AB

Câu 3. Cho D ABC vuông tại A có AB = 8cm, AC = 6cm.

a)  Vẽ đường cao AH. Chứng minh: D ABC       D HBA.

b)  Qua C vẽ đường thẳng song song với AB và cắt AH tại D. Chứng minh: D AHB           D DHC.

c)  Chứng minh : AC2 = AB. DC

d)  Tứ giác ABDC là hình gì? Vì sao? Tính diện tích của tứ giác ABDC.

Câu 4. Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm và hai đường chéo cắt nhau tại O. Qua B kẻ đường thẳng a vuông góc với BD, a cắt DC kéo dài tại E.

a)  Chứng minh: DBCE DDBE.

b)  Tính tỉ số SBCE,SDBE

c)  Kẻ đường cao CF của DBCE . Chứng minh :AC. EF = EB. CF

Câu 5. Cho tam giác ABC vuông tại A có AH là đường cao(H ΠBC ) .

a)  Chứng minhD AHB ∽DCHA .

b)  Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E.Chứng minh D AEB ∽D DAB .

c)  Chứng minh.BD = BH.BC .
d)  Chứng minh BHE = BDC .

1

5:

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: Xét ΔAEB vuông tại E và ΔDAB vuông tại A có

góc ABE chung

=>ΔAEB đồng dạng với ΔDAB

c: ΔABD vuông tại A có AE là đường cao

nên BE*BD=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BE*BD=BH*BC

d: BE*BD=BH*BC

=>BE/BC=BH/BD

=>ΔBEH đồng dạng với ΔBCD

=>góc BHE=góc BDC

18 tháng 9 2018

Hình vẽ bn tự vẽ

Vì tam giác ABC đều nên góc BAC=60 độ

Mà góc EAD=góc BAC

Suy ra: góc EAD=60 độ

Ta lại có: AE=AD(gt)

Suy ra: tam AED đều có DM là đg trung tuyến

Suy ra DM cũng là đường cao

Xét tam giác vuông DMC có:

\(MP=\frac{1}{2}CD\)(1)

Tương tự: CN vuông góc AB

Xét tam giác vuông CND có: 

\(NP=\frac{1}{2}CD\)(2)

Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh

Suy ra: CD=BE

Mà tam giác AEB có: MN là đường trung bình

Suy ra: \(MN=\frac{1}{2}BE\)

Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)

Từ (1);(2) và (3)

Vậy tam giác MNP đều

Chúc bn học tốt.

Mik đi hc đến 8h30 tối mới về nên làm hơi trễ