K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Theo đề bài ta có A O M ^ = M O C ^ , B O N ^ = D O N ^  mà A O M ^ = B O N ^  (hai góc đối đỉnh) nên M O C ^ = D O N ^ .

Ta có M O D ^ + D O N ^ = 180 °  (hai góc kề bù), suy ra M O D ^ + M O C ^ = 180 ° .

Hai góc MODMOC là hai góc kề, có tổng bằng 180 °  nên hai tia OC, OD đối nhau.

Chứng tỏ một tia là tia phân giác

A B O C D E

a)Vì AOC=DOC nên OC là tia phân giác cảu góc AOD

b)Vì COD=BOD nên OD là tia phân giác của BOC

c)Vì OE là tia đối của tia OC nên CE là 1 tia

Vì tia OE cắt AB tại O nên A)C và BOE là 2 góc đối đỉnh(đpcm)

7 tháng 9 2017

ban phải tính ra đã chứ

13 tháng 7 2017

O D C A E B

a) Ta có:

\(\widehat{DOA}=\widehat{COB}\left(=160^o-\widehat{DOC}\right)\) (1)

\(\widehat{DOA}=\widehat{EOB}\) (2 góc đối đỉnh) (2)

Từ (1) và (2) \(\Rightarrow\widehat{COB}=\widehat{BOE}\left(đpcm\right)\)

b) Vì \(\widehat{COB}=\widehat{BOE}\) (cmt)

\(\Rightarrow OB\) là phân giác của \(\widehat{COE}\)

31 tháng 7 2019

A B O C D E
a) Hai góc \(\widehat{AOC}\)và \(\widehat{BOD}\)không phải là 2 góc đối đỉnh vì tia OA đối tia OB mà tia OC không đối tia OD (Cũng không chắc có phải nói như vầy không)
b) Ta có: Tia OA đối tia OB, tia OE đối tia OD (1)
   
Vì tia OA là tia phân giác của \(\widehat{COE}\)
=> \(\widehat{COA}=\widehat{AOE}\)
    Mà \(\widehat{COA}=50\text{°}\)(Ngoặc ''}'' 2 điều lại)
=> \(\widehat{AOE}=50\text{°}\)
    Lại có: \(\widehat{BOD}=50\text{°}\)(Cũng ngoặc ''}'' 2 điều lại)
=> \(\widehat{AOE}=\widehat{BOD}\)(2)
    Từ (1) và (2) => Hai góc \(\widehat{BOD}\)và \(\widehat{AOE}\)là hai góc đối đỉnh
- Hãy sửa lại phần trình bày nếu cần nhé ^^