K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc EAO+góc EMO=180 độ

=>EAOM nội tiếp

b: góc AQM=góc APM=góc QAP=90 độ

=>AQMP là hcn

c: AQMP là hcn

=>AM cắt QP tại trung điểm của mỗi đường

=>I là trung điểm của AM

=>I nằm trên trung trực của AM

=>I,O,E thẳng hàng

20 tháng 12 2023

loading... loading... 

1: Xét tứ giác EAOM có \(\widehat{EAO}+\widehat{EMO}=90^0+90^0=180^0\)

nên AEMO là tứ giác nội tiếp

2: Xét tứ giác AQMP có \(\widehat{APM}=\widehat{AQM}=\widehat{PAQ}=90^0\)

nên AQMP là hình chữ nhật

=>AM cắt PQ tại trung điểm của mỗi đường

mà I là trung điểm của PQ

nên I là trung điểm của AM

=>I nằm trên đường trung trực của AM(1)

Xét (O) có

EA,EM là các tiếp tuyến

Do đó: EA=EM

=>E nằm trên đường trung trực của AM(2)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(3)

Từ (1),(2),(3) suy ra E,I,O thẳng hàng

 

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại trung điểm của AC

b: Xét tứ giác NCMA có

\(\widehat{CNA}=\widehat{CMA}=\widehat{MAN}=90^0\)

=>NCMA là hình chữ nhật

=>NM cắt CA tại trung điểm của mỗi đường

mà I là trung điểm của NM

nên I là trung điểm của CA

Ta có: OE vuông góc AC tại trung điểm của AC(cmt)

mà I là trung điểm của AC

nên OE\(\perp\)AC tại I

=>O,I,E thẳng hàng

c: Gọi giao điểm của CB với AN là F

Ta có: CM\(\perp\)AB

FA\(\perp\)AB

Do đó: CM//FA

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

=>AC\(\perp\)BC tại C

=>AC\(\perp\)FB tại C

=>ΔACF vuông tại C

Xét ΔEAC có EA=EC

nên ΔEAC cân tại E

=>\(\widehat{EAC}=\widehat{ECA}\)

Ta có: \(\widehat{EAC}+\widehat{EFC}=90^0\)(ΔACF vuông tại C)

\(\widehat{ECA}+\widehat{ECF}=\widehat{ACF}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EFC}=\widehat{ECF}\)

=>EF=EC

mà EA=EC

nên EF=EA(3)

Xét ΔEAB có KM//AE

nên \(\dfrac{KM}{AE}=\dfrac{BK}{BE}\left(4\right)\)

Xét ΔBFE có CK//FE

nên \(\dfrac{CK}{FE}=\dfrac{BK}{BE}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{KM}{AE}=\dfrac{CK}{FE}\)

mà AE=FE

nên KM=CK

=>K là trung điểm của CM

18 tháng 12 2023

a: Xét (O) có

OM là bán kính

EF\(\perp\)OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM,EA là các tiếp tuyến

Do đó: EM=EA

Xét (O) có

FM,FB là các tiếp tuyến

Do đó: FM=FB

Ta có: EF=EM+MF

mà EM=EA và FM=FB

nên EF=EA+FB