K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=t\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=\dfrac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+...+a_{2009}}=t\)

Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}=t^{2008}\\\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}...\dfrac{a_{2008}}{a_{2009}}=t^{2008}=\dfrac{a_1}{a_{2009}}\end{matrix}\right.\Leftrightarrow\left(đpcm\right)\)

21 tháng 11 2020

ai giả đi

31 tháng 12 2022

a: Đặt a/b=b/c=c/d=k

=>a=bk; b=ck; c=dk

=>a=bk; b=dk^2; c=dk

=>a=dk^3; b=dk^2; c=dk

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=k^3\)

\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)

=>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

c: Đặt a/2003=b/2004=c/2005=k

=>a=2003k; b=2004k; c=2005k

4(a-b)(b-c)=(c-a)^2

=>4(2004k-2003k)(2005k-2004k)=(2005k-2003k)^2

=>4*k*k=(2k)^2(luôn đúng)

=>ĐPCM

14 tháng 12 2017

Bạn xem hướng dẫn ở đây:

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

6 tháng 2 2017

ĐÂY :

Ta có:a1/a2=a2/a3=....=a2017/a2018

suy ra a1/a2xa2/a3x...xa2017/a2018=(a1/a2)^2017(2017 số bằng nhau nhân với nhau)                                                (1)

mặt khác a1/a2xa2/a3x.....xa2017/a2018==(a1xa2x...a2017)/(a2xa3x...xa2018)=a1/a2018(giản ước)=-5^2017              (2)

Từ(1)và(2) suy ra (a1/a2)^2017=-5^2017 suy ra a1/a2=-5

Theo tính chất dãy tỉ số bằng nhau:

-5=a1/a2=a2/a3=...=a2017/a2018=a1+a2+a3+...+a2017/a2+a3+a4+..+a2018

suy ra a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5 

Vậy :a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5 

Hôm nào có bài nào khó thì gửi mình giải cho

6 tháng 2 2017

-5 nha bn trong violympic vòng 12 lớp 7 phải ko chắc chắn đúng lun 100000000000000000000000000000000000000000000000000% vì bài này mik làm rùi.

cho mik nha

7 tháng 10 2016

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

6 tháng 10 2016

vt rõ đề đi

22 tháng 9 2019

Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ;  \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)

Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

7 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)

=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)

...........

\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)

Nhân (1),(2),....(2014) vế với vế:

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\) 

Vậy...