Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R
S= u1.u1 + u2.u2+...+un.un
S = u1.(u2 - d) + u2.(u3 - d)+...+un(un+1 - d)
S = u1.u2 + u2.u3 +...+un.un+1-d(u1+u2+...+un)
Đặt A = u2.u3 + u3.u4+...+un.un+1
3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1)
3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u5 - u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1
3d.A = un.un+1.un+2 - u1.u2.u3
3d.A = (u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)
A = [(u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d)
S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2
ta có : \(u_n=\frac{1+2^m}{2^m}\Rightarrow lim\left(u_n\right)=lim\left(\frac{1+2^m}{2^m}\right)=lim\left(1+\frac{1}{2^m}\right)=1\)
\(u_1=\sqrt{3}=tan\frac{\pi}{3}\)
Mặt khác \(tan\frac{\pi}{8}=\sqrt{2}-1\Rightarrow u_{n+1}=\frac{u_n+tan\frac{\pi}{8}}{1-u_n.tan\frac{\pi}{8}}\)
Nhìn công thức \(u_{n+1}\) có dạng \(tan\left(a+b\right)\) nên ta thay thử vài giá trị tìm quy luật
\(u_2=\frac{u_1+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.u_1}=\frac{tan\frac{\pi}{3}+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.tan\frac{\pi}{3}}=tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right)\)
\(u_3=\frac{tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right)+tan\frac{\pi}{8}}{1-tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right).tan\frac{\pi}{8}}=tan\left(\frac{\pi}{3}+\frac{\pi}{8}+\frac{\pi}{8}\right)=tan\left(\frac{\pi}{3}+2.\frac{\pi}{8}\right)\)
Dự đoán số hạng tổng quát có dạng: \(u_n=tan\left(\frac{\pi}{3}+\left(n-1\right)\frac{\pi}{8}\right)\)
Giả sử công thức đúng với \(n=k\) hay \(u_k=tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(u_{k+1}=tan\left(\frac{\pi}{3}+k\frac{\pi}{8}\right)\)(các số hạng đầu đã kiểm tra nên chứng minh quy nạp chắc khỏi cần kiểm tra lại)
Thật vậy, với \(n=k+1\) ta có:
\(u_{k+1}=\frac{u_k+tan\frac{\pi}{8}}{1-u_k.tan\frac{\pi}{8}}=\frac{tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)}\)
\(=tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}+\frac{\pi}{8}\right)=tan\left(\frac{\pi}{3}+k\frac{\pi}{8}\right)\) (đpcm)
\(\frac{u_{n+1}}{u_n}=\frac{\frac{n+1}{3^{n+1}}}{\frac{n}{3^n}}=\frac{3^n.\left(n+1\right)}{n.3^{n+1}}=\frac{n+1}{3.n}=\frac{1}{3}+\frac{1}{3n}\le\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)