Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a ^ 3 + b ^ 3 + c ^ 3 chia hết cho 9 (1). Giả sử a, b, c đều không chia hết cho 3 mỗi số có dạng BS * 9 plus/minus 1 do đó a ^ 3 + b ^ 3 + c ^ 3 =B S9+r 1 +r 2 +r 3 , trong đó r_{1} r_{2} r_{3} \in \{1; - 1\} Không có cách chọn ba số r_{1} r_{2} r_{3} nào để tổng chia hết cho Vậy tồn tại một trong ba số a, b, c là bội của 3.
vì 3 số lẻ chia 8 dư 1 hoặc 3 hoặc 5 hoặc 7
nên ta chia thành 2 nhóm
Nhóm 1 : dư 1 và 7
Nhóm 2 : dư 3 và 5
Xét 2 trường hợp :
Th1: 3 số đã cho thuộc nhóm trên
=> tổng của nó \(⋮\)8
Th2 : 3 số đã cho không thuộc nhóm trên
=> hiệu của nó \(⋮\)8
Vậy .....
Ta thấy tổng của 3 chữ số liên tiếp bắt đầu từ số chẵn thì luôn luôn có các chữ số tận cùng là 1;3;5;7;9 (số lẻ) mà tổng này lại chia hết cho 5 nên suy ra chữ số hàng đơn vị là 5.
Khi đã có chữ số hàng đơn vị thì ta có thể suy ra tiếp chữ số hàng trăm sẽ là chữ số 4 để tổng của 5 và 4 chia hết cho 9.
Ta thấy chữ số hàng chục là số chẵn nhưng tổng ở đây là 3 chữ số liên tiếp nên khi tổng trừ 3 thì phải chia hết cho 3 nhằm để tìm số bé. Như vậy ta dùng phương pháp loại trừ ta thực hiện phép tính sau:
(4a5 - 3 ) chia hết cho 3
Ta thấy được chữ số 0 và chữ và chữ số 6 có thể thay thế vào a. Ta có 2 dãy số tự nhiên liên tiếp là:
Dãy 1 : 134;135;136
Dãy 2 : 154;155;156
Nhưng để thoả mãn điều kiện của đề bài là phải có 1 số trong dãy chia hết cho 9 vì vậy ta sẽ có dãy số đúng là dãy 1 vì số 135 chia hết cho 9.
Gọi số đó là ab
ta có ab = a.10 + b = 3a + 7b + b
vì 7b chia hết cho 7 => để 3a + 7a + b chia hêt cho 7
=> 3a + b chia hêt cho 7
=> 3a + b + 14b chia hêt cho 7
=> 3a + 15b chia hêt cho 7
=> 3 ( a + 5b ) chia hêt cho 7
mà 3 ko chia hêt cho 7 => a + 5b chia hêt cho 7 ( đpcm )
Gọi số đó là ab (không phải là a.b đâu, đành phải chuyển dấu nhân thành dấu x)
\(ab=a\times10+b=7a+3a+b⋮7\)
\(\Leftrightarrow3a+b⋮7\)
\(\Leftrightarrow3a+b+14b⋮7\)
\(\Leftrightarrow3a+15b⋮7\)
\(\Leftrightarrow3\left(a+5b\right)⋮7\left(1\right)\)
Vì UCLN(3;7) = 1
\(\Rightarrow\left(1\right)\Leftrightarrow a+5b⋮7\)
XONG RỒI ĐÓ BẠN.
nếu có 1 số chia hết cho 5 bài toán được giải
nếu cả 5 số đều ko chia hết cho 5 thì theo nguyện lí đi-rí-lê sẽ có ít nhất 2 số có số dư bằng nhau
tổng các số đó chia hết cho 5